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Background—Age-related dementia, most commonly caused by Alzheimer disease or cerebrovascular factors (vascular 
dementia), is a major public health threat. Chronic arterial hypertension is a well-established risk factor for both types of 
dementia, but the link between hypertension and its treatment and cognition remains poorly understood. In this scientific 
statement, a multidisciplinary team of experts examines the impact of hypertension on cognition to assess the state of the 
knowledge, to identify gaps, and to provide future directions. 

Methods—Authors with relevant expertise were selected to contribute to this statement in accordance with the American 
Heart Association conflict-of-interest management policy. Panel members were assigned topics relevant to their areas of 
expertise, reviewed the literature, and summarized the available data. 

Results—Hypertension disrupts the structure and function of cerebral blood vessels, leads to ischemic damage of white matter 
regions critical for cognitive function, and may promote Alzheimer pathology. There is strong evidence of a deleterious 
influence of midlife hypertension on late-life cognitive function, but the cognitive impact of late-life hypertension is less 
clear. Observational studies demonstrated a cumulative effect of hypertension on cerebrovascular damage, but evidence 
from clinical trials that antihypertensive treatment improves cognition is not conclusive. 

Conclusions—After carefully reviewing the literature, the group concluded that there were insufficient data to make 
evidence-based recommendations. However, judicious treatment of hypertension, taking into account goals of care and 
individual characteristics (eg, age and comorbidities), seems justified to safeguard vascular health and, as a consequence, 
brain health. (Hypertension. 2016;68:e67-e94. DOI: 10.1161/HYP.0000000000000053.)
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Dementia is a progressive and typically irreversible dete-
rioration of cognitive function that is most often seen in 

older adults.1 Dementia is one of the most common neurologi-
cal disorders, affecting an estimated 30 to 40 million people 

worldwide. The number of individuals with dementia is antici-
pated to triple by 2050 as a result of the aging of the population, 
demographic shifts, and lack of disease-modifying treatments, 
with an associated cost exceeding $1.1 trillion.2 Alzheimer 
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disease (AD) and cerebrovascular diseases are the 2 leading 
causes of cognitive impairment, accounting for ≈80% of cases 
and often having a mixture of both pathologies.3 The term vas-
cular cognitive impairment (VCI) indicates the entire range of 
cognitive deficits caused by vascular factors, whereas vascular 
dementia refers to the more severe cases of VCI in which the 
cognitive decline affects day-to-day functioning negatively.3

Among vascular risk factors, chronic arterial hypertension 
is a major contributor to cognitive impairment.3 Hypertension, 
a highly prevalent disease affecting an estimated 80 million 
people in the United States and 1 billion individuals world-
wide,4 is the leading cause of global disease burden and over-
all health loss.5 The brain is one of the main target organs 
affected by hypertension. Thus, excluding age, hypertension 
is the most important risk factor for cerebrovascular pathol-
ogy leading to stroke and dementia. The harmful effects of 
hypertension on cognitive function have been recognized at 
least since the 1960s, when a study on psychomotor speed of 
air traffic controllers and pilots demonstrated reduced perfor-
mance in individuals with hypertension.6 Hypertension has 
been associated with reduced abstract reasoning (executive 
dysfunction), slowing of mental processing speed, and, less 
frequently, memory deficits.7

Although dementia caused by AD and vascular demen-
tia have traditionally been considered distinct nosological 
entities, increasing evidence indicates that these conditions 
often coexist.8,9 Thus, the neuropathological hallmarks of 
AD, amyloid plaques and neurofibrillary tangles (NFTs), are 
frequently associated with microcerebrovascular and macro-
cerebrovascular lesions in 40% to 50% of individuals with 
a clinical diagnosis of AD.10,11 In addition, ischemic lesions 
markedly enhance the impact of AD pathology on cognitive 
function.12,13 Furthermore, traditional cardiovascular risk fac-
tors have been suggested to play a role in AD,14 and some 
estimates indicate that risk factor reduction, including treat-
ment of hypertension, could reduce the incidence of clini-
cally diagnosed AD up to 30%.15

Cerebral blood vessels are the main target of the del-
eterious effects of hypertension on the brain.16 The resulting 
structural and functional cerebrovascular alterations underlie 
many of the neuropathological abnormalities responsible for 
the cognitive deficits, including white matter damage, micro-
infarcts, microbleeds, silent brain infarcts, and brain atrophy.17 
Hypertension is the most powerful modifiable risk factor for 
the cerebrovascular damage, and the dramatic reduction in 
stroke mortality over the past several decades has been attrib-
uted to the treatment of hypertension.18,19 Surprisingly, how-
ever, the impact of hypertension and its treatment on cognitive 
impairment has been more difficult to assess, and several key 
questions remain to be answered.

Considering the growing public health import of demen-
tia,1 a critical appraisal of current knowledge of the cognitive 
function associated with hypertension is warranted. Although 
the role of vascular risk factors in cognitive impairment has 
been addressed in other American Heart Association state-
ments,3 there is a strong rationale for an in-depth evaluation of 
the specific role of hypertension. First, the effect of hyperten-
sion was previously examined in the context of several other 
risk factors causing vascular dementia, and a detailed analysis 

of the evidence was not provided.3 Second, new epidemiologi-
cal data and imaging approaches have provided further insight 
into the relationship between hypertension and dementia and 
the cognitive domains that are predominantly affected. Third, 
the interaction between hypertension and AD pathology, a 
critical issue for both conditions, was not previously examined 
in detail. Therefore, an expert assessment is needed to update 
healthcare professionals on recent advances made in this field, 
to bring to the forefront outstanding questions, and to chart a 
path for future research directions.

The present statement seeks to provide an appraisal of the 
contribution of hypertension to age-related cognitive dysfunc-
tion. This statement refers primarily to the effects of chronic 
arterial hypertension. For simplicity, however, the term hyper-
tension is used throughout the text. We first examine the effects 
of hypertension on the pathobiology of the cerebral circulation, 
focusing on the structural and functional changes induced by 
chronic elevations in blood pressure (BP) on the cerebral vas-
culature. The cognitive domains most affected by hypertension 
are then reviewed, highlighting their unique features and their 
differences from other causes of dementia. The evidence from 
observational studies of the effect of hypertension on cognition 
is presented, followed by evidence from randomized, clinical 
trials of BP treatment and on the cognitive effect of hyperten-
sion treatment over the life course. Subsequent sections focus 
on the interaction of hypertension with other risk factors and 
the association between hypertension and AD. The final sec-
tion provides an overall summary of the evidence, identifies 
knowledge gaps, and provides future directions for advancing 
the field.

Methods
Authors with expertise in vascular pathophysiology, epidemi-
ology, neuroimaging, neuropathology, and cognitive science 
pertaining to the effects of hypertension on the brain were 
selected to contribute to this statement. Selection of the writing 
group was performed in accordance with the American Heart 
Association conflict-of-interest management policy. Topics 
for the statement were identified by the chair and co-chair 
and revised with input from the writing group. Subgroups of 
experts for each of the topics were established and charged 
with writing the section of the statement pertaining to their 
expertise. Each subgroup performed a search of the relevant 
English literature considered for inclusion in this statement 
using an up-to-date search strategy of reference databases and 
appropriate search terms. In addition to identifying the article 
reporting the main cognitive outcomes, we also reviewed, if 
relevant, the report on the primary outcome of the trial and 
on the trial design. Because of the heterogeneity of the stud-
ies spanning several decades, rigid inclusion/exclusion criteria 
could not generally be applied. We did not use a data abstrac-
tion tool. Conflicts were resolved by group consensus. The 
search also included a review of bibliographies and manual 
searches of key articles. Drafts of each section were written 
and sent to the chair and co-chair of the writing group for edit-
ing and elimination of redundancy. The edited sections were 
returned to the group members for clarification and revision 
and sent back to the chair and co-chair. The sections were 
then assembled in a single document that was sent back to 
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the members for discussion and comments. On the basis of 
these discussions and consensus, the sections were then edited 
accordingly by the primary author and returned to the chair 
and co-chair for further editing. The final document was cir-
culated among all members of the writing group, and once 
consensus was reached, the final document was submitted for 
independent peer review. After peer review, the final docu-
ment was approved for publication by the American Heart 
Association Council on Hypertension, Stroke Council, and 
Science Advisory and Coordinating Committee. After careful 
review of the available data, the group determined that there 
were insufficient data to make evidence-based recommenda-
tions. Therefore, specific recommendations are not provided.

Effects of Hypertension on Cerebrovascular 
Structure and Function

The cerebral vasculature is the main target of the deleteri-
ous effects of hypertension on the brain. Most of the vascular 
alterations induced by hypertension contribute to cognitive 
impairment by leading to hypoperfusion, ischemic and hem-
orrhagic stroke, and white matter injury. This section outlines 
the major changes that occur in the cerebral vasculature dur-
ing hypertension, focusing on the structure and function of 
large and small cerebral vessels, progression of atherosclero-
sis, and blood-brain barrier (BBB) integrity.

Vascular Structure
In humans as in animal models, hypertension is associated with 
changes in structure of the vascular wall of large, medium, and 
small cerebral vessels (arterioles, capillaries, and venules). At 
the different levels of the cerebrovascular tree, endothelial and 
smooth muscle cells are closely associated with brain cells 
(astrocytes, neurons, microglia) and perivascular cells, consti-
tuting the neurovascular unit.20

Atherosclerosis
Hypertension promotes atherosclerosis in both extracranial 
and intracranial arteries feeding the brain and accelerates the 
progression of intracranial atherosclerosis.21 Advanced ath-
erosclerotic lesions impair blood flow and are a major site of 
thrombogenesis.

Vascular Remodeling and Stiffening
Hypertrophic remodeling consists of hypertrophy of smooth 
muscle cells resulting in an increased cross-sectional area of the 
arterial or arteriolar wall and a reduction in the vessel lumen.22,23 
Inward remodeling is a rearrangement of the vessel wall that 
results in a reduction in lumen diameter.24 Both forms of remod-
eling are seen in cerebral arteries and arterioles in experimental 
models of hypertension, with supporting evidence in human 
hypertension as well.23–25 Chronic hypertension also induces 
deposition of collagen and fibronectin and elastin fragmenta-
tion of the vessel wall, leading to increased stiffness of large 
cerebral arteries.26 In smaller arterioles, as a result of disruption 
of the BBB (see Blood-Brain Barrier below), an inflammatory 
reaction may ensue that is associated with the production of 
reactive oxygen species and protease upregulation.27 Clinical 
measures of aortic and large-artery stiffening are good predic-
tors of cerebrovascular events and VCI.28–30

Small-Vessel Disease
Hypertension causes typical alterations in small arteries and 
arterioles supplying the subcortical and basal ganglia white 
matter, resulting in small-vessel disease (SVD), a major cause 
of lacunar strokes and cerebral hemispheric white matter dam-
age.17 These subcortical vessels might be more vulnerable to 
the mechanical stresses caused by hypertension because of 
their short linear path from larger vessels at the base of the 
brain.16,31 The typical pathological substrate of hypertensive 
SVD is arteriolosclerosis,17 which is characterized by loss of 
smooth muscle cells, deposits of fibro-hyaline material, nar-
rowing of the lumen, and thickening of the vessel wall (lipo-
hyalinosis). In more advanced cases, fibrinoid necrosis of the 
vessel wall results in vessel rupture and hemorrhage (intrace-
rebral hemorrhage and microbleeds).

Microvascular Rarefaction 
Loss of microvessels occurs in hypertension and during 
aging.32,33 Such changes, in concert with vascular remodel-
ing and stiffening, are thought to contribute to the progressive 
reduction in resting cerebral blood flow (CBF) associated with 
hypertension.34–36 Rarefaction may also reduce the potential 
for a compensatory collateral circulation in conditions of vas-
cular insufficiency or occlusion.

Mechanisms
The renin-angiotensin-aldosterone system and angiotensin II 
are key determinants of structural changes during hyperten-
sion. The renin-angiotensin-aldosterone system is a major 
therapeutic target in patients with essential or primary hyper-
tension,37 but the mechanisms of renin-angiotensin-aldoste-
rone system activation remain to be established. Whereas 
increases in circulating angiotensin II occur in renovascular 
and obesity-associated hypertension,38 plasma angiotensin II 
is not elevated in the majority of patients with essential hyper-
tension.39 Rather, local angiotensin II production and signal-
ing in brain, vessels, and other tissues may drive hypertension 
and the associated vascular changes.37,40

Angiotensin II has also been implicated in plaque com-
position and instability, which may underlie the effects of 
hypertension on atherosclerosis progression.41,42 Interestingly, 
intracranial atherosclerosis has also been linked to AD. It has 
been postulated that the hypoperfusion caused by arterial 
stenosis may lead to reduced amyloid-β (Aβ) clearance and 
increased Aβ production by activating β-secretase, a protease 
involved in Aβ cleavage from the amyloid precursor protein.43 
In turn, Aβ can promote atherosclerosis by inducing inflam-
mation, endothelial dysfunction, and oxidative stress.20,43 
Angiotensin II can also promote Aβ cleavage from amyloid 
precursor protein by activating β- and γ-secretase and aggra-
vate the vascular dysfunction induced by Aβ.44,45

Angiotensin II can induce inward and hypertrophic 
remodeling and vascular stiffening.22 Remodeling is medi-
ated by free radicals produced by the enzyme NADPH oxi-
dase and hypertrophy by activation of epidermal growth factor 
receptor probably resulting from mechanical stress and other 
mechanisms.46,47 Mechanisms of large-artery stiffening may 
also include mechanical stress leading to activation of p38 
mitogen-activated protein kinase and T-cell–mediated inter-
leukin-17 production.48 The factors mediating rarefaction have 
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not been elucidated, but vascular oxidative stress may sup-
press the production and action of trophic factors, resulting in 
vascular atrophy.27 In addition, loss of endothelial nitric oxide 
synthase–derived nitric oxide may also be a factor in micro-
vascular rarefaction.32,33 Aging and hypertension may act in 
an additive fashion because hypertension causes premature 
rarefaction with aging.32 The mechanisms of hypertension-
induced SVD are thought to be diverse and may include endo-
thelial dysfunction, BBB alterations leading to extravasation 
of plasma proteins, vascular inflammation, and microthrombi 
(Blood-Brain Barrier section).

Vascular Function
Chronic hypertension exerts profound effects on cerebrovas-
cular function, disrupting major factors regulating the cerebral 
circulation. These include endothelium-dependent mecha-
nisms, neurovascular coupling, and autoregulation.

Endothelium-Dependent Mechanisms
Endothelial cells are a major determinant of vascular tone. 
By the release of vasoactive factors such as nitric oxide and 
prostanoids, along with endothelium-dependent hyperpolar-
ization, these cells influence the contractile state of smooth 
muscle and regulate CBF in response to neurochemical, meta-
bolic, and mechanical signals (shear stress acting on the vessel 
lumen).49–51 Therefore, endothelial cells are critical in regulat-
ing the distribution of microvascular flow at the local level.22,52 
In addition, the endothelium protects vessels against thrombo-
sis, atherogenesis, and formation of vascular Aβ deposits in 
AD.22,49 Hypertension disrupts endothelial cell function, lead-
ing to a reduction of the ability of endothelial cells to regu-
late microvascular flow and to exert their antithrombotic and 
antiatherogenic effects.22 Thus, changes in endothelial func-
tion may play a role in the effects of hypertension in reducing 
resting CBF and promoting atherosclerosis and Aβ accumula-
tion and have been associated with stroke, VCI, white matter 
disease, and AD.53–56

Neurovascular Coupling
Increases in cellular activity in the brain require proportional 
increases in blood flow, often called neurovascular coupling 
or functional hyperemia.27,57 Neurovascular coupling ensures 
adequate delivery of oxygen, glucose, and other nutrients 
during cellular activation, along with removal of metabolic 
byproducts. In response to neural activation, neurons and 
glia produce signals that communicate with vascular cells, 
resulting in increases in blood flow highly restricted to the 
activated areas.27,57 In experimental models as in humans, 
hypertension attenuates the increase in CBF induced by 
neural activity.16,58 The resulting mismatch between energy 
demands and blood flow delivery, along with reduced basal 
CBF, is thought to contribute to the cognitive decline induced 
by hypertension.16,27

Autoregulation
In humans as in animals, CBF remains relatively constant over 
a wide range of mean arterial pressures (perfusion pressures; 
≈60–150 mm Hg),50,59,60 a property of the cerebral circula-
tion called autoregulation. Cerebral autoregulation depends 
on the intrinsic ability of vascular muscle to constrict when 

transmural pressure increases (myogenic tone and reactivity) 
and to relax when transmural pressure decreases. Hypertension 
leads to a right shift of the relationship between BP and CBF 
(autoregulation curve), so that the same level of cerebral per-
fusion occurs at higher levels of BP.61 This shift protects the 
cerebral circulation from the damaging effects of high BP but 
can also cause ischemic brain injury if sudden or large reduc-
tions in BP occur. Even in normotensive individuals, sudden 
large rises in arterial pressure can overwhelm autoregula-
tory mechanisms, resulting in massive CBF increases, BBB 
damage, and cerebral edema, as observed in hypertensive 
encephalopathy and the posterior reversible encephalopathy 
syndrome.62–64 In turn, acute hypotension leads to decreases 
in CBF, causing “watershed” infarcts in border zones between 
adjacent arterial territories.27,50

Mechanisms
Hypertension-induced vascular oxidative stress has been 
implicated in the alterations in endothelium-dependent 
responses and functional hyperemia. In models of angioten-
sin II–dependent hypertension, NADPH oxidase is a major 
source of oxidative stress,16 but the cells producing the radi-
cals at the vascular level have not been identified. Evidence of 
oxidative stress has been reported in the brain of individuals 
with SVD and white matter damage.65 The mechanisms of 
the shift of autoregulation may involve hypertension-induced 
changes in myogenic responses and mechanical conse-
quences of vascular remodeling and stiffening.16 The shift in 
autoregulation is especially damaging to the periventricular 
white matter, which is supplied by terminal branches aris-
ing from separate arterial territories and thus is most suscep-
tible to hypoperfusion.66,67 Accordingly, the severity of white 
matter injury correlates with the magnitude of autoregula-
tory dysfunction.68 In genetic models of hypertension, there 
is evidence that increased myogenic tone, endothelial dys-
function, and inward remodeling can be prevented with phar-
macological targeting of the renin-angiotensin-aldosterone 
system.69 However, much less is known about the extent to 
which hypertension-induced vascular changes are reversible. 
Further work is needed to determine which cerebrovascular 
end points that are affected by hypertension are also revers-
ible and amenable to treatment.

Blood-Brain Barrier
The structural and molecular features of the BBB are key 
for normal brain function in that they control the bidirec-
tional movement of ions, molecules, and cells between 
blood and brain.70,71 The BBB results from the unique 
properties of cerebral endothelial cells that are adjoined by 
tight junction, have minimal vesicular transport across their 
cytoplasm (transcytosis), and are enriched with plasmalem-
mal influx and efflux transporters regulating the exchange 
of molecules between blood and brain and vice versa.70,71 
However, BBB integrity is also influenced by other cell 
types, including astrocytes and pericytes (intramural vascu-
lar cells present at the level of capillaries), as well as the 
extracellular matrix.70–72

Hypertension has profound effects on the BBB. Chronic 
hypertension is associated with BBB disruption in animal 
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models and in humans.73,74 Loss of BBB integrity may be an 
early event in the pathogenesis of SVD.73,75,76 In genetically 
hypertensive rats as in models of angiotensin II–dependent 
hypertension, reductions in CBF, loss of tight junction proteins, 
loss of BBB integrity, and white matter lesions have all been 
described.77,78 Loss of BBB integrity has also been described 
in hypertensive patients79,80 in association with SVD and white 
matter damage.74,75,79 The mechanisms of the effect have not 
been fully elucidated, but one hypothesis is that hypoxia, 
caused by reduced CBF in susceptible white matter regions, 
leads to activation of hypoxia inducible factor-1α–dependent 
genes, including metalloproteases, which may promote BBB 
damage.81 Cellular elements beside endothelial cells are also 
involved in the BBB dysfunction. Pericytes, which are required 
for maintenance of the BBB,82 may undergo degeneration 
during hypertension,83 suggesting that loss or dysfunction of 
these cells may also contribute to disruption of BBB integ-
rity. Extravasation of plasma proteins leading to vascular and 
perivascular inflammation and microvascular thrombosis are 
thought to be key pathogenic consequences of the BBB disrup-
tion contributing to white matter damage through inflamma-
tory mediators and reactive oxygen and nitrogen species, but 
conclusive evidence is lacking, especially in humans.27

Summary of Evidence
Hypertension induces adaptive changes in cerebral blood ves-
sels that reduce stress on the vessel wall and protect down-
stream arterioles, capillaries, and venules from potentially 
damaging fluctuations in arterial pressure.23 However, these 
structural alterations, in concert with the associated impair-
ment of critical vascular regulatory mechanisms, may result in 
CBF reductions in regions of the subcortical white matter at 
risk for vascular insufficiency. Angiotensin II–dependent vas-
cular oxidative stress is a critical factor in both the structural 
and functional cerebrovascular alterations induced by hyper-
tension. In addition, alterations of endothelial cells and the 
BBB represent a key early event in SVD, but the pathogenic 
mechanisms remain poorly defined. An unexpected recipro-
cal interaction between hypertension and AD pathology has 
emerged whereby the hypertensive vasculopathy exacerbates 
the accumulation of Aβ in brain and acts in concert with Aβ 
to suppress vital cerebrovascular regulatory mechanisms. 
Although it remains to be established whether the deleterious 
effects of hypertension on cognition are reversible or lessened 
by treatment, experimental evidence suggests that some vas-
cular changes induced by hypertension may be reversible with 
appropriate treatments.

Cognitive Domains Targeted by Hypertension
This section describes the specific cognitive domains tar-
geted by hypertension. Although the majority of early studies 
examining cognitive function in individuals with hypertension 
such as the MMSE (Mini-Mental Status Examination) have 
focused on global cognitive outcomes or composite measures 
of several cognitive tests, there is a growing literature on spe-
cific domains of cognitive function and possible differential 
association with hypertension. Studies focused on identifying 
specific domains may contribute to identifying the mechanism 

by which hypertension impairs cognitive function, for exam-
ple, microvascular effects versus brain atrophy, and informing 
the development, timing, and evaluation of pharmacological 
and behavioral interventions, for example, disease self-man-
agement and medication adherence. Cognitive function is 
assessed in studies of hypertension with a number of mea-
sures. The most common measures administered in these stud-
ies assess the specific domains of memory, executive function, 
and processing speed.

Memory
Memory function includes tests of short-term memory, verbal 
learning, and working memory. Common short-term memory 
tasks include the Digits Forward Test, in which the subject is 
asked to repeat strings of numbers in same order in which they 
were read,84 and immediate recall tasks, in which the subject 
is asked to recite back a list of words immediately after hear-
ing them (eg, first trial of the Rey Auditory Learning Test).85,86 
Delayed memory is then assessed, usually after a 30-minute 
interval, with recall of short verbal stories or lists. Delayed mem-
ory can also be evaluated with 5-minute delayed recall, after a 
brief distraction task, of a list of words that have been used in 
sentences to promote encoding.84,87 Working memory tasks also 
tap into executive function. The most common measure is the 
Digits Backwards Test, in which the subject is asked to repeat a 
string of words in the reverse order that they were read.84

Executive Function
Executive function involves multiple brain processes and con-
sequently is the cognitive domain that is most difficult to assess 
and has the most heterogeneity in measurements across stud-
ies. Of note, the widely used MMSE does not test domains 
related to executive function. Executive function is of particular 
importance for daily life because of the role it plays in decision 
making and problem solving, critical tasks for self-manage-
ment of chronic illnesses. The most common tests used were 
the Controlled Oral Word Association Test (word fluency), cat-
egory fluency (eg, animal naming), and the Trail Making Test 
Part B. The word fluency test requires subjects to generate as 
many words as possible beginning with the same letter of the 
alphabet (F, A, or S) in 60 seconds.88,89 Category fluency, in 
which subjects are asked to name as many words as possible in 
a single category, for example, animals, is also used but is less 
difficult.90 On average, older adults without cognitive impair-
ment generate 12 to 16 words per minute and 19 to 22 animals 
per minute.89 The Trail Making Test has 2 parts, A and B.91,92 In 
part A, the subject is timed while drawing a continuous line to 
connect consecutive numbers (1–25). Part B times how long a 
subject takes to draw a continuous line connecting alternating 
letters (A-L) and numbers (1–13). The total time for Part B or 
the difference between the 2 parts (time for part B minus time 
for part A) is used as the outcome, with higher scores reflecting 
poorer performance. The difference score attempts to remove 
the speed element from the test evaluation and thus is more 
commonly used to examine executive function.89

Speed of Processing
Although not a cognitive domain, reduced speed of processing 
leads to declines in other domains. Many tests of processing 
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speed also tap into attention and may be referenced as attention 
tasks. The 2 most common speed of processing/attention tasks 
are the Digit Symbol Substitution Test and the Trail Making 
Test Part A. The Digit Symbol Substitution Test is a paper and 
pencil task in which the subject is given 90 seconds to trans-
late numbers into symbols using a key at the top of a page.84 
The total number of correct responses is used as the score. 
The Trail Making Test Part A, described above, uses the time 
required to draw a continuous line to connect numbers (1–25), 
with higher scores reflecting poorer (slower) performance.

Domains Affected by Hypertension Versus Clinically 
Diagnosed AD
There is moderately strong evidence to support the claim that 
impaired and declining speed of processing and executive func-
tion are the most commonly encountered cognitive changes 
associated with hypertension.93–98 The pattern of cognitive 
impairment associated with hypertension is often distinguished 
from the pattern associated with neurodegenerative dementias 
such as AD by the lack of consistent findings for an impact of 
hypertension on memory function, a defining characteristic of 
clinically diagnosed AD. However, the issue is complicated by 
the fact that hypertension, in addition to acting through cere-
brovascular mechanisms, may be a risk factor for AD pathol-
ogy (Effects of Hypertension on Cerebrovascular Structure 
and Function section and Hypertension and AD section).

Summary of Evidence and Methodological 
Considerations
Although the evidence for an effect of late-life hypertension on 
specific cognitive domains is not conclusive, a few studies sug-
gest that controlling BP from midlife to late life may provide a 
strategy to decrease the risk of late-life cognitive impairment, 
particularly in processing speed and executive function.94,96,99,100 
There is stronger and more consistent evidence for an asso-
ciation with systolic BP (SBP) than for diastolic BP (DBP), 
although this comparison has not been made uniformly across 
studies. This question warrants further examination.

Several methodological issues prevent direct comparison or 
meta-analysis of studies. Assessment of cognitive function is 
not standardized across studies, resulting in inconsistency in the 
domains assessed and even differences in the tests used to assess 
a single domain, with the most heterogeneity for the execu-
tive function. An effort by the National Institute of Neurologic 
Disorders and Stroke and the Canadian Stroke Network to har-
monize assessment batteries for VCI offers standardized batter-
ies of well-validated instruments for various interview lengths 
(eg, 60, 30, and 5 minutes).101 In addition, there is considerable 
variability in the potentially confounding factors controlled 
across studies of hypertension and cognition. Most studies 
adjust for age, sex, and education. Fewer adjust for additional 
cardiovascular risk factors such as smoking, comorbid condi-
tions (eg, diabetes mellitus), and body mass index.

Hypertension and Cognition:  
Observational Studies

The goal of this section is to summarize the evidence from 
observational studies on the relationship between BP and 

hypertension and cognitive health. The section is organized 
into 2 main subsections: evidence from cross-sectional studies 
and evidence from longitudinal studies. Each section is then 
further divided into the following categories based on the age 
at which BP was measured: midlife (age, 40–64 years), late 
life (age, 65–84 years), and oldest old (age ≥85 years). We 
report findings on global cognition using measures such as 
the MMSE or the modified MMSE, and we report findings on 
specific cognitive domains such as executive function, mem-
ory, and processing speed (Cognitive Domains Targeted By 
Hypertension section).

Cross-Sectional Evidence on the Association 
Between BP and Cognition

Late-Life BP
Evidence from cross-sectional studies has focused primarily on 
BP and cognition in late life. The evidence is mixed, with some 
studies suggesting that exposure to high BP is associated with 
worse cognitive function but other studies reporting the opposite 
association, a U-shaped association, or no association.

Several studies that examined the cross-sectional associa-
tion between BP in late life and cognition suggested that having 
hypertension or exposure to high BP is associated with worse 
cognitive function.97,102–105 Examples of such studies include 
the ARIC study (Atherosclerosis Risk in Communities) and 
NHANES (the National Health and Nutrition Examination 
Survey). Early findings from the ARIC study showed that sub-
jects with a diagnosis of hypertension, defined as SBP ≥160 
mm Hg or DBP ≥90 mm Hg, had lower scores on tests of pro-
cessing speed and word fluency compared with those without 
hypertension.97 More recent findings from NHANES simi-
larly showed that having hypertension or high BP (SBP ≥140 
mm Hg or DBP ≥90 mm Hg) at ≥70 years of age was associ-
ated with worse performance on a test of global cognition.105 
However, other studies reported the opposite; that is, exposure 
to high BP in late life was associated with better cognitive 
performance.106,107 For example, in the Honolulu-Asia Aging 
Study, having an SBP ≥160 mm Hg was associated with 51% 
lower odds of poor performance on a test of global cognition 
compared with having an SBP of <100 mm Hg.106 A few other 
studies reported a U-shaped association.108 For example, in 
less educated members of the Baltimore Longitudinal Study 
on Aging, both high and low DBPs were associated with poor 
performance on a neuropsychological test battery, including 
tests of executive function and confrontation naming (Boston 
Naming Test).108 Furthermore, the Framingham Heart Study 
reported no cross-sectional association between BP in late life 
and cognitive function.109

Oldest Old BP (≥85 Years of Age)
Findings from a study in centenarians in Australia showed a 
cross-sectional association between BP and cognition such that 
higher SBP was correlated with better performance on a test of 
global cognition.110 More recent findings from the 90+ Study in 
a retirement community in Southern California showed that the 
prevalence of hypertension did not differ between those who 
are cognitively normal and those with mild cognitive impair-
ment (MCI).111 However, the prevalence of hypertension was 
greatest in those with nonamnestic MCI compared with other 
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MCIs, thus suggesting that hypertension-related cognitive 
impairment involves skills other than memory.

Longitudinal Evidence on the Association Between 
BP and Cognition
Longitudinal studies offer a better study design than cross-
sectional studies by ensuring a temporal association between 
a putative exposure and outcome. When repeated assessments 
of cognitive function are available, a rate of cognitive decline 
can also be calculated that may provide insight into the cause 
of cognitive impairment.

BP in Adolescence
A recent study in adolescents of the Seychelles Child 
Development study failed to find associations between BP 
measured at 12 to 15 years of age and cognitive function 
measured at both 17 and 19 years of age.112 It may be that 
underlying physiological mechanisms linking hypertension 
and cognition may not be in play at such a young age. It is 
also possible that the tests used do not capture the variability 
in cognition that is associated with high BP at a young age.

Midlife BP
Recent findings in subjects of the CARDIA) study (Coronary 
Artery Risk Development in Young Adults) with mean age of 
25 years at baseline showed that higher burden of SBP over 25 
years from young adulthood to middle age was associated with 
worse performance on several cognitive tests in midlife, includ-
ing verbal memory, processing speed, and executive function, 
when the cohort was a mean of 50 years of age.93 CARDIA is 
among the few studies that examined early to midlife BP and 
cognitive function in midlife. There is more substantial evi-
dence addressing the longitudinal association between midlife 
BP and cognitive function in late life.98,103,106,113–115 Overall, 
these studies consistently showed that having high SBP or a 
hypertension diagnosis in midlife was associated with worse 
cognitive performance in late life. Examples of such studies 
include the Framingham study,113 which showed that higher 
SBP and DBP (increments of 10 mm Hg) in stroke-free indi-
viduals in midlife were associated with worse performance on 
a composite global cognitive score and measures of attention 
and memory. Similarly, in the Honolulu-Asia Aging Study,106 
having a high SBP (≥160 mm Hg) in midlife was associated 
with a 2-fold increased risk of poor cognitive function on a 
test of global cognition 25 years later from a fully adjusted 
model. Findings from the Maine-Syracuse Longitudinal Study 
showed that higher baseline BP (increments of 10 mm Hg) was 
associated with worse cognitive performance and a decline in 
visualization and fluid abilities up to 20 years later.115 Even pre-
hypertension, defined as SBP of 120 to 139 mm Hg/DBP of 80 
to 89 mm Hg, in middle-aged women of the Women’s Health 
and Aging Project was associated with reduced cognitive func-
tion on processing speed and verbal memory a decade later.116

However, few other studies reported either a U-shaped 
association or no association between midlife BP and cog-
nition in late life. For example, the SABRE study (Southall 
and Brent Revisited) showed a U-shaped association between 
low and high DBP and cognitive impairment, measured as 
a composite cognitive score, 20 years later.117 In addition, a 

recent study in members of a French cohort of middle-aged 
adults showed that elevated BP (SBP/DBP ≥130/85 mm Hg) 
or treatment in midlife was not associated with cognitive func-
tion, measured as a composite score and on subtests, nearly a 
decade later.118

Evidence on the association between midlife BP expo-
sure and rate of cognitive change is scarce. Findings from the 
Framingham Offspring Cohort Study suggested that having 
midlife hypertension or an SBP ≥140 mm Hg was associated 
with faster annual decline in executive function.99 A recent 
study in subjects of the Maastricht Aging Study suggested that 
having midlife hypertension at baseline (ie, prevalent hyperten-
sion) was associated with cognitive decline at 6 and 12 years 
of follow-up on domains of verbal memory, executive func-
tion, and processing speed.96 The cognitive decline observed in 
individuals developing hypertension after baseline (ie, incident 
hypertension) was more modest compared with the decline in 
those with prevalent hypertension, potentially suggesting that 
duration of exposure also may play a role. Another recent study 
in members of ARIC showed that midlife hypertension was 
associated with a significantly greater decline in global cog-
nitive function over 20 years. Similar findings were observed 
with higher SBP in whites but not in blacks.94

Late-Life BP
Several studies have examined the association between late-
life BP and cognitive function measured several years after 
BP was measured. Findings from these studies are inconsis-
tent. Several large-scale studies such as the Chicago Health 
and Aging Project,119 the Longitudinal Study on Aging,120 
the Sacramento Area Latino Study on Aging,121 and WHIMS 
(Women’s Health Initiative Memory Study)122 failed to find 
an association. However, other studies reported a U-shaped 
association107,123 or a linear association.95,124,125 For example, 
results from the Duke Population Studies of the Elderly found 
a U-shaped association between SBP and cognitive decline 
over 3 years, although this association was observed only in 
white subjects.123 Results from ELSA (English Longitudinal 
Study on Aging) showed linear associations such that higher 
SBP and DBP were associated with lower scores on a global 
cognitive index and a memory index ≈8 years later. Further 
findings showed that having an SBP ≥160 mm Hg was asso-
ciated with worse performance on the global and memory 
cognitive indexes 8 years later compared with having an SBP 
<140 mm Hg.124 The ARIC study95 showed that having hyper-
tension at baseline, defined as SBP/DBP ≥140/90 mm Hg or 
taking antihypertensive medications, was associated with a 
decline in processing speed over a 6-year period. Findings 
in community-dwelling members without dementia of the 
Women’s Health and Aging Study II showed that having an 
SBP ≥160 mm Hg was associated with a greater incidence 
of cognitive impairment over a 9-year period as measured on 
executive function.125

Oldest Old BP
There are only a handful of longitudinal studies of BP and 
cognition in the oldest old. Findings from the Leiden 85-Plus 
study were inconsistent; although some findings did not show 
an association between BP and change in global cognitive 
function over 3 years,126 other analyses of the same study 
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showed that a 10–mm Hg increase in SBP was associated 
with better cognitive performance on a global test and several 
domain-specific tests.127 These results were further confirmed 
in a more recent analysis.128 Furthermore, recent findings in 
subjects of the Newcastle 85+ study showed that having high 
BP, defined as SBP/DBP ≥130/85 mm Hg or treatment, was 
associated with better global cognitive function over 5 years.129

Summary of Evidence
There is consistent evidence that BP in midlife is associated 
with altered cognitive function in both midlife and late life. 
The association of BP in late life and oldest old age with cogni-
tion is less clear, with evidence of both harmful and beneficial 
effects of high BP on cognition. Associations were observed 
mostly with tests of global cognition and executive function, 
which is not surprising given that vascular risk factors influ-
ence executive functioning to a greater extent and are not 
necessarily related to memory (Cognitive Domains Targeted 
by Hypertension section). The inconsistency of results across 
studies, especially in older age, may reflect differences in the 
cognitive domains assessed, differences in aspects of study 
design, including length of follow-up and how the rate of cog-
nitive change was modeled, differences in characteristics of the 
study populations and varying age ranges, and adjustment for 
shared determinants that may confound the hypertension-cog-
nition association. Reverse causation may also contribute to the 
observed association between BP and cognition, especially in 
studies with cross-sectional design. Cognitive impairment is a 
process that unfolds over decades, thus presenting a challenge 
to establishing temporality. More research is needed to eluci-
date the causal link between BP and cognition and to better 
understand the role of medication in the observed associations. 
The relationship between BP and cognitive function remains 
relatively underexplored in minority and racially or ethnically 
diverse populations. Finally, there remain inadequate examina-
tion and reporting of potential sex differences in the effects 
of BP and hypertension on cognition. Future studies need to 
closely examine and report sex-specific associations.

Interaction With Other Risk  
Factors, Including Genetics

This section explores the possible impact of cardiovascular 
and other risk factors on the cognitive deficit associated with 
hypertension, focusing on age, sex, race/ethnicity, obesity and 
central obesity, metabolic syndrome/insulin resistance/diabe-
tes mellitus, inflammatory biomarkers, lipids, smoking, occu-
pation, education, diet, and air pollution. Possible interactions 
with atrial fibrillation, arterial stiffness, cardiac function, 
carotid intima-media thickness/stenosis, and stroke were not 
examined because these intermediate subclinical and clini-
cal disease states could lie along the causal pathway between 
hypertension and cognitive impairment. However, genetic 
factors that might underlie both hypertension and cognition 
were also examined, focusing on genes such as APOE that are 
known to affect cognition independently, genes thought to be 
associated with vascular dementia and a vascular pattern of 
cognitive impairment, and genes affecting the risk of stroke, 
hypertension, and cognitive impairment.

Interaction With Age, Sex, and Metabolic Traits

Age
An interaction with age has been shown in multiple stud-
ies, with higher BP and hypertensive status being associ-
ated with worse cognition in younger130 and middle-aged 
adults (Hypertension Treatment Over the Life Course sec-
tion). On the other hand, either a J-shaped association of 
SBP with cognition108 or an association of higher DBP with 
better cognition and slower rates of decline in cognition 
was noted in older adults. Thus, a study of centenarians 
showed a positive association between SBP and cognitive 
performance.110 This age interaction has been shown both 
for cognitive function in individuals free of dementia and 
when the end point of clinical dementia or AD was con-
sidered (Hypertension and AD section). Conversely, analy-
sis of 1695 Framingham Study subjects failed to show an 
interaction with age over the 55- to 88-year range when 
individuals with concomitant stroke were excluded, and a 
study of 1130 subjects in the ARIC study also showed no 
age interaction.100,131

Sex
The interaction of male or female sex with hypertension in 
affecting cognition has not been investigated in detail, although 
a single study of 1034 women suggested an interaction of 
hypertension with menopausal status. Among postmeno-
pausal women, cognitive performance on the Mini-Boston 
Naming Test was worse in hypertensive women compared 
with normotensive women, whereas among premenopausal 
women, no difference was observed between hypertensive and 
normotensive women.132

Metabolic Traits
An interaction of various metabolic and vascular risk factors 
such as diabetes mellitus with hypertension has been docu-
mented to increase the risk of stroke133 and thus to indirectly 
increase the risk of dementia. However, studies that have 
looked for an interaction of diabetes mellitus with hyper-
tension and an adverse impact on cognition have typically 
found independent, additive effects rather than a synergis-
tic interaction of these 2 risk factors.134 Among the various 
metabolic dysfunctions noted in diabetes mellitus, insulin 
resistance appears most likely to interact with hypertension. 
A measure of central obesity (having a waist-to-hip ratio in 
the top quartile) was noted to have a synergistic interaction 
with severity (Seventh Report of the Joint National Committee 
on Prevention, Detection, Evaluation, and Treatment of High 
Blood Pressure stage) of hypertension on the impact on visual 
memory performance in the Framingham Offspring study,135 
and a small study has reported an adverse impact of concur-
rent elevations in BMI, waist-to-hip ratio, and insulin resis-
tance (homeostatic model assessment–insulin resistance) on 
cognition in hypertensive patients.53 Either no evidence or 
limited evidence was found for interactions of BP or hyper-
tension with smoking, occupation, education, diet, and air pol-
lution on their impact on cognition, although several of these 
risk factors are known to have synergistic interactions with 
hypertension in increasing the risk of cardiovascular events, 
including clinical stroke.
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Interaction With Circulating Biomarkers
In a small study from Maastricht, in hypertensive individu-
als, higher circulating levels of markers of endothelial activa-
tion (eg, vascular cellular adhesion molecules and selections) 
and of inflammation (eg, C-reactive protein) were found to 
be associated with worse cognition, and in a Japanese study 
that has not been replicated, pentraxin-3, another marker of 
inflammation, was associated with worse cognition in hyper-
tensive individuals. However, these studies included only 
hypertensive individuals and could not specifically assess 
possible interactions between BP and inflammation.136 There 
are only a few reports of interactions between adverse lipid 
profiles (elevated low-density lipoprotein, lower high-density 
lipoprotein, and higher triglycerides) and BP in their impact 
on cognition137; these seem to be in the setting of a metabolic 
syndrome with concomitant insulin resistance or explained by 
an APOE ε4 genotype.

Interaction With Genetic Markers
An interaction between the APOE ε4 allele and many cardiovas-
cular risk factors in their impact on cognition has been shown 
in various studies, and this appears to be true for hypertension 
in most138,139 but not all of these studies.140 The Honolulu-Asia 
Aging Study followed up 3065 Japanese American men over 
26 years and observed an interaction of the APOE ε4 genotype 
and an SBP ≥160 mm Hg in their impact on cognition with 
relative risks of 2.6 and 13, respectively, of impaired cognition 
when individuals who had hypertension but no APOE ε4 allele 
and those with both risk factors were compared with a control 
group with neither.141 An Australian study of 1467 community 
subjects who were 60 to 64 years of age at baseline and exam-
ined for cognitive performance 3 times over 8 years noted that 
the APOE-hypertension interaction, but not a APOE–mean 
arterial pressure interaction, was associated with a small but 
statistically significant increase in the rate of decline of epi-
sodic memory, verbal ability, and global cognition.142 A simi-
lar interaction was demonstrated in 563 subjects of the Seattle 
Longitudinal Study in whom cognitive change was assessed 
over a 21-year period.143 Recently, several genetic variants 
have been identified to determine cognitive performance in the 
domains of verbal memory, fluid intelligence (the general intel-
ligence factor), and executive function in older adults. In these 
older adults, a variant in the KIBRA gene showed an associa-
tion with worse verbal memory, an effect that was restricted to 
individuals with hypertension and was larger in hypertensive 
women compared with men.144

Summary of Evidence
There are limited data on possible interactions between 
demographic, genetic, and vascular risk factors and hyper-
tension in their impact on age-related cognitive decline and 
risk of AD. Age is an important factor, with high BPs in 
midlife and lower BPs in late life increasing the risk of poor 
cognition. Menopausal status, insulin resistance, inflamma-
tion, and the APOE ε4 genotype may each potentiate cog-
nitive decline in hypertensive individuals. The mechanisms 
underlying these putative interactions remain uncertain, 
although in the case of APOE, the tau pathway has been 
implicated in a few studies.

Hypertension and AD
Hypertension is an important vascular risk factor and may 
influence the risk of MCI or dementia resulting from AD, 
the neuropathological findings in AD, and the correspond-
ing neuroimaging and cerebrospinal fluid (CSF) biomark-
ers. The purpose of this section is to explore the relationship 
between hypertension and the risk for AD and its neuro-
pathological manifestations, as well as neuroimaging and 
CSF biomarkers.

Hypertension and AD Risk: Epidemiological Studies
Examination of the associations between elevated BP and 
the risk of clinically diagnosed AD is complicated by sev-
eral factors, and the associations remain poorly understood. 
Observational studies suggest that higher BPs before the age 
of 65 to 70 years increase the risk of AD. In older adults, 
lower SBP appears to be associated with an increased risk 
of developing AD, whereas higher DBP may lower risk. 
Genetic variants associated with higher BP may reduce the 
risk of developing AD pathology.145 Here, we summarize the 
epidemiological evidence and then discuss the challenges in 
interpretation.

Epidemiological Evidence
Cross-sectional analyses in the Hisayama Study,146 in the 
Canadian Health and Aging Study,147 and in a convenience 
sample of 1259 Medicare enrollees148 showed an association 
of high BP with greater overall risk of dementia and with risk 
of vascular dementia but not with risk of clinically diagnosed 
AD. The Women’s Health Initiative showed an association of 
higher BP with greater risks of incident MCI and dementia 
that disappeared after adjustment for possible confounders.122 
The Kungsholmen study found no association of BP with 
dementia risk over 6 years of follow-up except at the extremes 
of SBP (>180 mm Hg) and DBP (<65 mm Hg).149 In con-
trast, other studies in older adults suggest a protective effect 
of mild hypertension on AD dementia risk.150–154 A U-shaped 
association with the lowest risk for AD dementia in individu-
als with a DBP in the 70– to 90–mm Hg range was noted in 
the Chicago Health and Aging Project.119 Unlike the findings 
in older adults, recent studies have observed an association 
of higher midlife BPs or midlife categorical hypertension 
with increased late-life dementia risk, including studies in 
Finnish,155,156 Japanese Northern Californian,157 and Hawaiian 
cohorts.158 However, these studies did not separately examine 
the risks of developing AD versus vascular dementia.

Challenges
Hypertension, however defined, is associated with an 
increased risk of stroke in a graded, continuous manner, 
and stroke, in turn, increases the risk of dementia.12,159 Many 
epidemiological studies are confident in their clinical diag-
nosis of dementia but acknowledge uncertainty resulting 
from limited resources in assigning a subtype of dementia. 
Thus, if individuals with hypertension were more likely to 
manifest clinical symptoms of dementia at the same stage of 
AD pathology, this could lead to a spurious association of 
hypertension with AD dementia. Conversely, individuals with 
hypertension are also more likely to be categorized as having 
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vascular or mixed dementia rather than “pure” AD, and this 
diagnostic bias could result in an apparent protective effect of 
hypertension on clinically diagnosed AD.

Another reason for the complexity of the association 
between BP and AD is the many ways in which BP can be 
assessed (SBP, DBP, pulse pressure,160 mean arterial pressure, 
and arterial stiffness measured as carotid-femoral pulse wave 
velocity on tonometry) and the differential impact of each 
dimension on brain health and AD pathology. SBP in indi-
viduals at higher risk of subsequent dementia may rise faster 
starting in midlife and decline faster at older ages compared 
with SBP in other individuals.161

There appears to be a progressive decline in BP in the 
early stages of dementia that may be attributable directly to the 
neurodegenerative process affecting brainstem and hypotha-
lamic nuclei regulating arterial pressure and systemic metabo-
lism,162,163 may result from the associated systemic changes 
such as weight loss and increased frailty, or may be second-
ary to the onset of cardiovascular diseases such as myocardial 
infarction and congestive heart failure that can reduce the abil-
ity of the heart to maintain systemic and cerebral perfusion 
pressures. Thus, BPs measured 1 to 10 years before the onset 
of clinical AD may be biased by reverse causality and may not 
represent the pressures experienced before the onset of the AD 
pathological process.

In summarizing the literature, 2 recent weighted meta-
analyses of cohort studies, including 6 studies of individuals 
with MCI164 and 28 studies of cognitively normal individuals, 
that specifically considered the end point of clinically diag-
nosed AD165 failed to find an association of any BP measure 
with risk of developing AD, whereas an earlier meta-analysis 
of 18 cohort and case-control studies had suggested an associa-
tion of elevated midlife DBP with increased risk of AD and an 
inverse association of late-life hypertension with lower risk of 
AD; both effects were small.166 Secular trends in the treatment 
of hypertension in midlife might be having an impact. The risk 
for dementia in Japanese American subjects treated with anti-
hypertensives for >12 years starting in midlife was lower com-
pared with the risk in hypertensive indiduals not on treatment 
(for dementia: hazard ratio, 0.40; 95% confidence interval, 
0.22–0.75; and for AD: hazard ratio, 0.35; 95% confidence 
interval, 0.16–0.78) and was similar to the risk in normoten-
sive individuals.167 An added consideration is that antihyper-
tensives may have class-specific effects on AD pathology that 
are independent of their BP-lowering effect168,169 (Effects of 
Hypertension on Cerebrovascular Structure and Function 
section). In this regard, it is of interest that individuals with 
genetic variants associated with higher BP and use of antihy-
pertensive agents have a reduced risk of AD.145

Hypertension and AD Neuropathology
In all of its target organs, hypertension causes dysfunc-
tion through alterations in vascular function (Effects of 
Hypertension on Cerebrovascular Structure and Function 
section). However, there are some reports that hypertension 
might have an impact on AD pathology. In Japanese American 
men (n=243) in the Honolulu-Asia Aging Study, there was an 
association between midlife BP and burden of NFTs at death, 
roughly 3 to 4 decades later.170 Elevated SBP at midlife was 

associated with low brain weight and neocortical and hip-
pocampal neuritic plaques, whereas elevated DBP at midlife 
was associated with increased NFTs in the hippocampus. 
Another clinical-pathological study from the Bronx, NY,171 
that included both men and women (n=291) found that medi-
cation-treated hypertensive indivduals had significantly lower 
levels of neuritic plaques and NFTs compared with nonhyper-
tensive individuals. Untreated hypertensive individuals had 
more NFTs and neuritic plaques than the treated hypertensive 
individuals but were not different from the normotensive indi-
viduals. The authors emphasized the role of antihypertensive 
medications over hypertension itself because of the pattern of 
results in treated versus untreated hypertensive individuals and 
suggested a protective effect of medications. A clinical-patho-
logical study involving 84 individuals with neuropathological 
diagnoses of AD with or without cerebrovascular changes from 
San Diego172 found that antemortem vascular risk factors that 
included hypertension but also diabetes mellitus, heart failure, 
atrial fibrillation, peripheral vascular disease, and smoking 
were associated with lower Braak stage. The study was under-
powered to examine hypertension by itself. Because it is dif-
ficult to quantify cerebrovascular changes, these results could 
have been attributable to greater vascular burden. Along those 
lines, an earlier study from this group found that pulse pressure 
was associated with cerebrovascular lesions (large-vessel ath-
erosclerosis, infarcts of any size) at autopsy,173 along with no 
associations with Braak stage or amyloid angiopathy. A study 
from Seattle Group Health reported an association between 
systolic hypertension and the presence of >2 microinfarcts in 
younger subjects (age, 65–80 years), but there were no asso-
ciations with AD-type lesions (Braak stage or Consortium to 
Establish a Registry for Alzheimer’s Disease plaque score) 
or Lewy bodies.174 There were no associations with vascular 
lesions in older individuals (>80 years old at entry).

In summary, the evidence linking antemortem hyperten-
sion to postmortem neuropathological changes seen in AD is 
modest and confounded by differential survival, indication 
bias, and small numbers. Although results from the Honolulu-
Asia Aging Study170 support the idea of an overlap between 
hypertension and AD pathophysiology, other reports do not. 
With antemortem amyloid and tau positron emission tomogra-
phy (PET) imaging now available, prospects for determining 
the true relationship between hypertension and AD pathologi-
cal changes are much brighter.

Impact of Hypertension on Biomarkers  
and Association With AD
Hypertension and AD-type pathophysiology appear to share a 
common pathogenesis in several imaging features: white mat-
ter hyperintensities (WMHs), cerebral microbleeds, and brain 
volume/atrophy.

White Matter Hyperintensities
WMHs, as detected by fluid-attenuated inversion recovery 
magnetic resonance imaging (MRI), are widely regarded as 
lesions associated with cerebrovascular disease175–177 (see 
elsewhere for a discussion of relevant white matter imaging 
modalities75,178,179). Hypertension is the most important risk 
factor for the development of WMH.99,180–182 Hypertension in 

 by guest on June 22, 2017
http://hyper.ahajournals.org/

D
ow

nloaded from
 

http://hyper.ahajournals.org/


Iadecola et al    Impact of Hypertension on Cognitive Function    e77

general,180,183–185 high SBP,99,185–190 high DBP,186,189,191–193 low 
DBP,194 pulse pressure,185 mean arterial pressure,195,196 pulse 
wave velocity,197 and arterial stiffness198 have all been asso-
ciated with WMHs, and it is not clear that one measure of 
BP predominates over the others in magnitude of the asso-
ciation. Treatment adds considerable complexity to the rela-
tionship between hypertension and WMH, but a few clinical 
trials have shown that WMH progression is reduced with 
antihypertensive treatment.199,200 Diffusion tensor imaging is 
another imaging technique for examining anatomic integrity 
in white matter. Changes in fractional anisotropy or mean dif-
fusivity have been associated with some aspect of hyperten-
sion,201–206 although not invariably.207 Carriage of the APOE 
ε4 genotype has been associated with higher levels and faster 
rates of accumulation of WMH in some studies208,209 but not 
others.210 Some studies have claimed that the combination 
of hypertension and carriage of the APOE ε4 genotype was 
linked to more WMHs.211,212 We found no studies claiming 
interactions at the mechanistic level between hypertensive 
pathophysiological process and AD pathophysiological pro-
cesses on WMH burden. On the other hand, there is evidence 
that cerebrovascular disease and AD pathophysiology have at 
least additive effects at the clinical level.213–216 Thus, although 
cerebrovascular mechanisms do not worsen AD processes, 
the combination of the two may lead to earlier and greater 
cognitive decline.

Cortical Microbleeds
Cortical microbleeds, microhemorrhages of 1 to 3 mm in 
diameter that often are attributable to cerebral amyloid angi-
opathy,217 are also associated with hypertension.182,218–221 Deep 
locations, that is, the putamen and thalamus, are much more 
likely to be associated with hypertension, whereas cortical 
locations are more likely to be associated with carriage of 
the APOE ε4 allele209,222,223 or with elevated Aβ levels by PET 
imaging.224 In patients with AD, hypertension increased the 
likelihood of cortical microbleeds,225 but that effect could be 
additive or interactive. We otherwise uncovered no evidence 
for or against an interaction between hypertension and Aβ 
burden for cortical microbleeds. Cortical microbleeds are 
modestly related to cognition197,226 but not to decline in indi-
viduals with AD.227

Brain Atrophy
In some reports, loss of brain volume has been associated with 
hypertension,190,194,228,229 mean arterial pressure,196 or arterial 
stiffness,198 but other studies failed to demonstrate the asso-
ciation99,195,230,231 (Beauchet et al232 provide further discussion). 
Treatment effects might confound the interpretation of associ-
ations.233 The mechanisms whereby hypertension causes brain 
volume loss are not clear. To the extent that WMHs are also 
associated with brain volume,208,234–240 the effects of hyper-
tension on brain volume could be mediated via loss of white 
matter integrity. Other potential mechanisms could include 
microinfarction, remote effects of axonal injury in white mat-
ter, and an interaction with AD processes such as trafficking of 
damaged proteins in the perivascular spaces.241 Hypotension 
and falling BP over time are also associated with loss of brain 
volume.242 Indeed, the U-shaped relationship between BP 
and brain integrity is an important feature of the relationship 

between BP and late-life cognitive impairment (Hypertension 
and Cognition: Observational Studies section).

Aβ PET Imaging
Only a few studies have examined associations between 
hypertension and Aβ levels by PET imaging. In a subset of 
subjects from a ginkgo clinical trial who underwent Pittsburgh 
compound B PET imaging, there was an association between 
pulse wave velocity and higher brain amyloid levels243 that 
was independent of BP and APOE ε4 genotype. In a group of 
middle-aged volunteers, an association of SBP and pulse pres-
sure with burden of Aβ by PET imaging was seen,244 but in 
older individuals, concurrent DBP but not SBP was associated 
with Aβ burden by Pittsburgh compound B PET.245 Another 
study found an interaction between the APOE ε4 genotype 
and hypertension and Pittsburgh compound B PET.246 This 
same group also found a main effect for pulse pressure.

CSF Biomarkers for AD
We found only a few studies that examined associations of BP 
and CSF markers of AD. In a group of cognitively normal indi-
viduals who had CSF examinations, there was an association of 
pulse pressure with increased phospho-tau and reduced Aβ42,247 
a finding that was replicated in an independent cohort.248 Another 
study of CSF biomarkers showed an interaction between the 
APOE ε4 allele (especially ε4 homozygosity) and hypertension 
in elevating CSF tau and phospho-tau levels.249 However, in that 
study, there was no similar interaction of hypertension and 
carriage of an ε4 allele on CSF Aβ levels. The relevance of 
these findings to the progression of AD requires further study.

Summary of Evidence
Several epidemiological and clinical pathological studies 
have reported a link between hypertension and AD. However, 
a challenge to the interpretation of the relationship between 
hypertension and AD is the substantial lag from the onset of 
the study of hypertension to the time of pathological diagno-
sis of AD. The growing availability of amyloid PET imaging 
and structural MRI offers the opportunity to better under-
stand the role of hypertension and brain pathology in vivo. 
In population-based or special (enriched) cohort studies, large 
sample sizes would be needed to distinguish separate roles for 
SBP, DBP, pulse pressure, mean arterial pressure, and carotid-
femoral pulse wave velocity on each of the imaging features. 
Longitudinal studies would be needed to assign priority to 
assessing hypoperfusion, white matter changes, cortical volu-
metric changes, microbleeds, and amyloid accumulation to 
understand their interrelationships. Future imaging techniques 
that can detect specific target involvement will be needed to 
understand what cells or cellular elements are the site of the 
initial pathogenic insult of hypertension. The cell types and 
end points that are most amenable to therapy are still unclear.

Hypertension and Cognition:  
Clinical Trials of BP Lowering

This section examines available data from clinical trials on 
the effect of hypertension treatment on cognitive function. We 
excluded studies that were not randomized, prospective tri-
als with a primary or secondary outcome relating to cognitive 
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status. Using the search criteria outlined in Methods, we iden-
tified 27 trials for consideration. We considered criteria based 
on sample size and excluded studies with <500 individuals 
per treatment arm. This is an arbitrary cut point based on a 
generic power analysis using data reported by Hypertension 
in the HYVET-COG (Very Elderly Trial Cognitive Function 
Assessment) for dementia events (36 of 1000 in the control 
group and 24 of 1000 in the treatment group250) and differ-
ences in end-trial MMSE measured in SYST-EUR (Systolic 
Hypertension in Europe).251 All studies were further assessed 
for bias according to the Cochrane Collaborations checklist.252

Trial Descriptions
Nine trials met the general inclusion criteria. Most trials 
testing cognition were based on the total main trial popu-
lation (SPS3 [Secondary Prevention of Small Subcortical 
Strokes Trial], PROGRESS [Perindopril Protection Against 
Recurrent Stroke Study], SCOPE [Study on Cognition and 
Prognosis in the Elderly], PROFESS [Prevention Regimen 
for Effectively Avoiding Second Strokes], ONTARGET 
[Ongoing Telmisartan Alone and in Combination With 
Ramipril Global Endpoint Trial], TRANSCEND [Telmisartan 
Randomised Assessment Study in ACE Intolerant Subjects 
With Cardiovascular Disease], and SHEP [Systolic 
Hypertension in the Elderly Program]), were ancillary stud-
ies embedded in a subsample of the main trial,253 or included 
selected sites (SYST-EUR251). Sample sizes ranged from 
1439 to 25 620, and mean patient age ranged from 62 to 83 
years. Follow-up time ranged from ≈2 years (SYST-EUR)251 
to ≈5 years (ONTARGET/TRANSCEND254). Two trials were 
stopped early because they reached their primary end point 
(SYST-EUR251 and HYVET250). The SPS3 antiplatelet arms 
were stopped early because of futility and evidence of harm.255

Target populations for the trials differed. The main inclu-
sion of some trials was based on BP levels256 (SHEP257 and 
HYVET250,251) or resistance to a particular class of antihyper-
tensives (TRANSCEND).254 Other trials included patients 
with cardiovascular disease or at high risk for cardiovascu-
lar events: The ACCORD MIND trial (Action to Control 
Cardiovascular Risk in Diabetes–Memory in Diabetes) 
included individuals with long-standing diabetes mellitus at 
high risk for cardiovascular events253; ONTARGET included 
patients with subclinical evidence of cardiovascular risk254; 
and some trials included patients with a recent to more remote 
history of different stroke subtypes, that is, ischemic and lacu-
nar (PROFESS, SPS3, and PROGRESS).258–261

The mean BP levels at baseline have declined over time, 
consistent with evolving evidence supporting lower BP treat-
ment goals. Thus, the earlier trials (SHEP,262 SYST-EUR,251 
and SCOPE256) included people now classified in the stage 2 
hypertension range. More recent trials included patients with 
qualifying BP levels that fell into the stage 1 hypertension 
range, so mean baseline BPs were lower.

Treatment protocols have also changed, and designs 
have become more complex. The range of designs include 
testing a single drug against placebo (TRANSCEND254; a 
single drug versus placebo, allowing open-label antihyper-
tensive treatment in the placebo arm if needed in SCOPE256) 
or a primary drug followed by a standardized step procedure 

with a protocol-driven sequence for adding additional drugs 
(HYVET,250 SYST-EUR,251 SHEP,257 and SCOPE256) or without 
specified BP goals (SPS3,259 PROFESS,258 PROGRESS,260 and 
ONTARGET/TRANSCEND254) ACCORD MIND253 tested 2 
therapeutic strategies with different SBP goals, <120 versus 
<140 mm Hg. Several trials used a 2-by-2 factorial design that 
allowed a test of >1 intervention. The 2-by-2 factorial of SPS3 
had 2 arms comparing different SBP goal–defined therapeutic 
strategies and comparing a dual antiplatelet therapy with aspi-
rin plus placebo.259 The PROFESS trial had 4 arms that tested 
antiplatelets, angiotensin II receptor inhibitors, and placebo258; 
ONTARGET had 3 arms comparing an angiotensin-convert-
ing enzyme inhibitor, angiotensin II receptor inhibitors, and a 
combination of drugs.254 The achieved reduction in BP (SBP/
DBP) ranged from −0.9/0.6 in the telmisartan versus ramipril 
arm in the ONTARGET trial254 to 15/5.9 in HYVET.250

Cognitive Outcomes
The most widely used test, as a single and primary outcome, 
has been the MMSE, which is a 30-point test of global cogni-
tion. The SPS3 trial259 used the Cognitive Abilities Screening 
Instrument, another, longer test of global cognitive function. 
ACCORD MIND253 had as its primary outcome psychomotor 
speed (Digit Symbol Substitution Test; Cognitive Domains 
Targeted by Hypertension section). The MMSE score was 
used in several metrics to define outcome, including the 
absolute MMSE score, percent scoring <24 (HYVET,250 
ONTARGET,254 SCOPE,256 and PROGRESS260), or a drop 
of 3 points (PROGRESS260). The MMSE was also used as 
a screening instrument to identify people for additional 
workup for dementia (HYVET250 and PROGRESS260) or to 
define dementia (ONTARGET254). The second most frequent 
outcome was dementia, which was diagnosed by investiga-
tor-assessed and specialist-confirmed diagnosis of dementia 
(ONTARGET254 and PROFESS clinical impression258), a 
local investigator following international criteria (SCOPE256), 
and an examination of screen-positive individuals by a local 
specialist following international guidelines and then central 
adjudication (PROGRESS260; SCOPE,256 SYSTEUR,250,251 
and SHEP257). Trials that aimed to subtype the dementia used 
the Hachinski ischemic score263 in addition to the MMSE and 
clinical assessment to assess the likelihood of a cardiovascu-
lar contribution and a computed tomography scan to image 
cerebrovascular lesions.

Other Measures of Brain Function and Structure
Three trials had imaging substudies (MIND,253 PROFESS,264 
and PROGRESS199) to test whether the intervention was 
related to the development or progression of pathology in the 
brain, as measured by MRI. PROFESS imaged 777 people on 
average 27 months apart; in that subsample, there were no dif-
ferences between treatment groups264 in BP levels or in the 
outcome, progression of WMHs assessed by fluid-attenuated 
inversion recovery MRI. In the PROGRESS substudy of 
192 subjects followed up for 36 months, a significant slow-
ing of WMH progression was detected between treatment 
groups.199 The 314 MRIs acquired at baseline and 40 months 
later in ACCORD MIND showed that total brain volume had 
declined more in the group with intensive versus standard 
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strategy to lower BP.253 Few trials assessed >1 cognitive func-
tion in all (SPS3)253,259 or a subsample of subjects (SHEP262 
and SCOPE265). A SCOPE substudy (n=257)265 found sugges-
tive evidence of a small effect of treatment on attention and 
episodic memory tests but not working memory or executive 
function. Other trials found no treatment differences in test 
scores.253,259,262

Results of Clinical Trials
Only 1 trial, SYST-EUR, had a marginally significant result 
suggesting the treatment benefit of reducing dementia (21 
versus 11 patients; P=0.05), an effect that persisted during 
an open follow-up phase.251,266 The PROGRESS trial, using 
a definition of “dementia (or cognitive decline) after stroke” 
and “other dementia (cognitive decline),” found a significantly 
(P=0.03) reduced risk in the patients with treated dementia 
after stroke compared with control subjects (43 versus 65) and 
an overall reduction in cognitive decline in the treated group, 
with the difference attributable mainly to the cognitive decline 
with stroke group.260 Other trials report no differences on 
cognitive test performance between intervention and control 
arms. Post hoc analyses in several trials indicate that within 
treatment arms, there was a negative association of more cog-
nitive decline in those with a smaller decrease in BP (SYST-
EUR and ONTARGET).251,259

Evidence for a Particular Class of Antihypertensive Drug
A meta-analysis in 2011 of 8 trials reviewed here found that 
overall there was no effect of BP lowering on the risk for 
dementia.267 However, there was a suggestion that calcium 
channel blockers may slightly reduce the incidence of demen-
tia, but the authors note that the benefit could be attributable 
mostly to the amount of BP lowering achieved in those tri-
als. Such comparisons point out the difficulty in identifying 
any one drug class as being particularly beneficial for cogni-
tion: There is a confounding between baseline BP, number of 
drug classes used to lower BP, and the amount of BP lowering 
achieved in the trials. The evidence suggests that there is no 
Class A evidence for treating hypertensive patients (>160/90 
mm Hg) with no apparent cardiovascular disease to preserve 
cognition. At lower levels of BP and in trials based on patients 
with preexisting cardiovascular disease, the existing tri-
als have been uniformly negative. However, this conclusion 
should be tempered given several sources of bias in these trials 
and the strength of the trials to test the hypotheses. These are 
examined next.

Possible Sources of Bias and Heterogeneity of 
Results
Five studies reported the power of their analyses to 
detect treatment differences related to the cognitive out-
comes.250,251,253,258,260 There is a possibility that the trials using 
the MMSE as their primary outcome were underpowered for 
the small differences that have been reported. In multicenter, 
multicultural studies, standardized assessment of dementia is 
important, particularly for mild cases of dementia, for which 
the cutoff for clinical dementia can vary substantially. Several 
trials reporting dementia outcomes do not provide sufficient 
information to determine whether and how assessments of 

dementia followed standardized protocols to fulfill interna-
tional guidelines (ONTARGET,254 PROFESS,258 SCOPE,256 
PROGRESS260, HYVET,250 SYST-EUR,251 and SHEP262). 
There is also a lack of documentation about the blinding of 
the individuals administering tests or rendering a dementia 
diagnosis.

Separation of BP levels between treatment arms was, in 
some of the trials testing specific drugs, attenuated because the 
control group was treated with antihypertensive drugs. This 
was a particular issue in the early trials when ethics guide-
lines called for treating very high BP (SCOPE,256 SHEP,262 and 
SYST-EUR266), although the definition of very high varied.

Finally, negative trial results could be attributable, in some 
trials, to the loss of data from those who either did not receive 
the full BP intervention or missed cognitive assessments.

Possibility of Finding Effects and Sources of 
Heterogeneity
Even in the absence of specific bias in implementation or 
reporting, it is important to consider the overall question of 
whether the trials were appropriately designed to test the 
efficacy of BP lowering to reduce cognitive decline/demen-
tia. One factor to consider is whether the outcome measured 
was appropriate for the subjects’ age. The MMSE or a simi-
lar test of global cognition was used as the only cognitive 
measure250,254,256,258,259 in subjects from 60 to 65 years of age. 
Others were investigating dementia in patients of that age. 
This age range is likely too young to see a detectable change 
on the MMSE because that test has a low ceiling and a non-
linear pattern of change and is unlikely to provide cases of 
incident dementia, which begins to increase in incidence 
after 80 years of age. Furthermore, the MMSE was designed 
to screen for cognitive deficits caused by AD and may miss 
some of the major cognitive changes thought to accompany 
vascular-related cognitive impairment.3

Another issue about the strength of the completed trials 
investigating BP lowering and cognition is the likelihood of 
detecting clinically relevant outcomes during the short inter-
vention periods. Several trials included a relatively cognitively 
healthy group with a mean MMSE score of 29 of 30 points. 
Post hoc analyses of several studies suggested that those 
who were more cognitively compromised, but still without 
dementia, may benefit more from short-term interventions 
(SCOPE268 and ONTARGET/TRANSCEND254).

Finally, if loss to follow-up or stopping treatment is related 
to cognitive impairment, then differences between treatment 
arms may be attenuated, with negative results. A simulation 
analysis based on SHEP269 suggested that if those with cardio-
vascular disease who dropped out of the trial were also cogni-
tively impaired and had stayed in the trial, different, positive 
results of the intervention might have been detected.

Summary of Evidence
Early trials treating patients with very high baseline BP sug-
gested that lowering BP at these levels might be efficacious. 
However, issues related to the choice of outcomes relative to 
the age of the trial population, possible bias caused by sample 
attrition, and questions about quality control protocols raise the 
question of whether the hypothesis of cognitive benefit from BP 
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lowering has been adequately tested. Furthermore, bringing in 
new imaging-based outcomes to better understand the response 
to therapy and its relation to cognitive outcomes would enhance 
these trials. Trials recently ending should shed more light on 
this question. One trial, the SPRINT trial (Systolic Blood 
Pressure Intervention Trial),270 with target treatment goals for 
elevated BP ended early because of efficacy on the main car-
diovascular events271 but has extensive data on brain health. 
Results from SPRINT-MIND (SPRINT Memory and Cognition 
in Decreased Hypertension) will be available next year. In the 
interim, careful control of BP might be a reasonable course of 
action, taking into account age and comorbidities.

Hypertension Treatment Over the Life Course
Managing BP to maintain cognitive health will likely require 
taking into account the complex relationship among BP, age, 
the presence of comorbidities, and antihypertensive therapy. 
In this section, we review available evidence that sheds light 
on the expected cognitive benefit of treating hypertension 
across the life course.

Treatment of Hypertension in Children and 
Adolescents
Clinically apparent vascular disease rarely occurs in children 
and adolescents. However, preclinical risk factors for vascu-
lar disease such as hypertension appear to have become more 
prevalent in the past few decades.272–274 The basis for this rise 
in pediatric hypertension is unclear but may be explained in 
part by an increase in the rate of obesity.275,276

Given the rarity of pediatric vascular events such as stroke, 
little evidence directly ties pediatric hypertension to subse-
quent vascular outcomes during childhood and adolescence. 
However, 3 factors implicate childhood hypertension in the 
subsequent development of adverse outcomes in adulthood. 
First, childhood and adolescent hypertension often contin-
ues into adulthood. Moderate correlations have been found 
between BP during childhood and BP years later,277,278 which 
suggests that early-life hypertension will often persist into 
later life stages in which it is a well-established risk factor for 
vascular events and cognitive impairment. Second, prospec-
tive cohort studies have found associations between childhood 
vascular risk factors such as hypertension and the presence 
of subclinical atherosclerotic lesions on autopsies of study 
subjects who died in young adulthood as a result of acciden-
tal trauma.279,280 Similarly, hypertension in early life has been 
linked to in vivo measures of vascular dysfunction such as 
left ventricular hypertrophy on echocardiogram and carotid 
intima-media thickness on ultrasound.281 Such findings place 
childhood hypertension on the pathway to preclinical vascular 
dysfunction, which in turn has been strongly linked to clinical 
vascular events such as stroke and heart failure. This paral-
lels the pathway seen with adult-onset hypertension. Finally, 
the childhood presence of metabolic syndrome, of which 
hypertension is an integral part, has been directly associated 
with clinical vascular outcomes in early adulthood.282 Taken 
together, these findings indicate that hypertension in early life 
not only serves as a prelude to hypertension in adulthood but 
also has already begun to have insidious effects on the vascular 

system that predispose to symptomatic vascular disease early 
in life. In addition, several small studies have raised the sug-
gestion that elevated BP has immediate adverse implications 
for cognitive function even in childhood.283–285

No randomized, clinical trial has evaluated the effect of 
antihypertensive therapy on clinical outcomes or markers of 
end-organ damage in the pediatric population.286 The consid-
erations above provide a plausible rationale for carefully treat-
ing hypertension in children and adolescents in the hope of 
preventing vascular events and cognitive impairment in adult-
hood. However, several cautionary points apply. The long-
term safety of pharmacological treatment in children’s growth 
has not been studied.286 This supports a preferential emphasis 
on lifestyle modification, especially weight loss, before resort-
ing to pharmacological therapy. Furthermore, many children 
with hypertension no longer manifest elevated BP in adult-
hood.277,278 This uncertainty about the long-term durability of 
childhood hypertension calls for continual reassessment of BP 
and whether pharmacological therapy is needed, especially in 
patients who have successfully lost weight.276

Treatment of Hypertension in Young Adults
Most cases of hypertension in individuals <40 years of age 
involve isolated diastolic hypertension.287 This often pro-
gresses to also involve systolic hypertension as patients enter 
middle age.288 Furthermore, even across the fifth decade of 
life, a strong association remains between increasing DBP 
and cardiovascular events such as myocardial infarction.289 
This natural history argues for attempts to reduce BP even 
in young adults, especially in patients who manifest any evi-
dence of end-organ injury. Across randomized trials of anti-
hypertensive therapy, the relative benefits of treatment and of 
specific classes of drugs do not appear to vary on the basis of 
whether patients were >65 or <65 years of age.290 However, 
randomized, clinical trials have not been performed to spe-
cifically assess the benefits of pharmacological treatment of 
hypertension in young adults. In this context, nonpharmaco-
logical measures may be an especially compelling first-line 
approach. The PREMIER trial enrolled 810 relatively young 
adults (mean age, 50 years) with stage 1 hypertension (mean 
BP, ≈135/85 mm Hg) who were not receiving antihyperten-
sive therapy. Subjects were randomly enrolled to a brief ses-
sion of advice about factors affecting BP or to 1 of 2 intensive 
behavioral interventions. At 6 months, the intensive interven-
tions led to an ≈4–mm Hg reduction in SBP.291 This suggests 
that intensive nonpharmacological interventions in young 
adulthood may prevent the onset of hypertension or at least 
may delay the need for pharmacological therapy until later in 
midlife.

Treatment of Hypertension in Midlife
Numerous randomized, clinical trials in middle-aged popula-
tions have shown that antihypertensive therapy substantially 
decreases the risk of adverse cardiovascular events such as 
stroke.292–295 Some of these trials included measures of cogni-
tion. As discussed in the Interaction With Other Risk Factors, 
Including Genetics section, trial results do not clearly support 
or refute a beneficial effect of antihypertensive therapy in pre-
serving cognition.296–300
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Furthermore, by midlife, hypertension often occurs in the 
context of other systemic vascular risk factors such as dyslip-
idemia, diabetes mellitus, obesity, a sedentary lifestyle, and 
exposure to tobacco and environmental pollutants. Recent 
evidence from a large, randomized, clinical trial suggests that 
an overarching strategy for modifying these vascular risk fac-
tors helps to preserve cognition in individuals in their 60s 
and 70s.301

Finally, both clinically overt stroke and silent brain 
infarcts appear to lie on the causal pathway to cognitive 
impairment,159,302,303 so widespread adoption of antihyper-
tensive therapy to prevent stroke is likely to also result in 
improvements in cognition over the long term. A recent 
comparison of cognitive outcomes between 2 successive 
cohorts of elderly subjects born about a decade apart dem-
onstrated better cognition in the later-born cohort.304 These 
findings follow several prior reports to the same effect. An 
analysis of long-term care surveys from the United States 
across the 1980s and 1990s first suggested a temporal 
decline in the prevalence of dementia.305 This pattern was 
corroborated by a separate US population–based survey 
that found an ≈5% decrease in the prevalence of cognitive 
impairment between 1993 and 2002.306 Similar patterns 
have been found in analyses from Sweden and England.307,308 
These secular trends may have been driven by less expo-
sure to adverse environmental influences such as pollution 
and greater exposure to antihypertensive therapy. However, 
such ecological conclusions cannot be drawn without more 
detailed data (Hypertension and Cognition: Clinical Trials 
of BP Lowering).

Overall, although robust evidence is lacking to prove that 
antihypertensive therapy in middle age provides a cognitive 
benefit, such a benefit appears likely on the basis of the epide-
miological considerations above. Given the expected burden 
of cognitive impairment and dementia in an aging population, 
this suggestion of benefit provides a strong rationale for ran-
domized, clinical trials of antihypertensive therapy designed 
primarily to test the hypothesis that aggressive control of 
hypertension during middle age can delay cognitive decline 
in later life. Although antihypertensive therapy in midlife is 
already supported by evidence of its benefit in reducing clini-
cal events such as stroke, more robust evidence of its role in 
cognition would have important implications for our under-
standing of the pathogenesis of dementia. The results of the 
ongoing SPRINT-MIND trial (Interaction With Other Risk 
Factors, Including Genetics section) may help shed light on 
this question.

Treatment of Hypertension in Late Life
Randomized, clinical trials did not shed much light on 
whether antihypertensive treatment protects cognitive func-
tion (Interaction With Other Risk Factors, Including Genetics 
section), but this uncertainty has been especially important in 
the very elderly. As discussed above, this population was well 
represented in HYVET (mean age, ≈84 years),250 but other 
randomized, clinical trials of antihypertensive therapy have 
enrolled few patients >80 years of age.292–295 Furthermore, sev-
eral observational studies have found that low BP, particularly 
low DBP, is associated with cognitive and physical decline 

in the elderly107,128,149,154,309–311 (Hypertension and Cognition: 
Observational Studies section).

It is unclear whether the relationship between low BP and 
cognitive decline in late life reflects a dysfunctional autonomic 
nervous system resulting in low BP, low BP leading to pro-
gressive hypoperfusion and brain atrophy, or some combina-
tion of these and other factors. Clearly, much more research is 
needed on the complex relationships among BP, antihyperten-
sive treatment, frailty and multimorbidity, and cognitive and 
functional status in the oldest old. In the meantime, it may be 
reasonable to consider frailty and multimorbidity as a factor 
in decisions about antihypertensive therapy in late life. This 
is especially the case in patients who manifest intolerance 
of antihypertensive therapy in the form of symptoms such 
as orthostatic hypotension.312 On the other hand, the results 
of the recently completed SPRINT trial, which included the 
oldest old, support the hypothesis that pharmacological treat-
ment of elevated SBP reduces the risk of stroke and could help 
preserve cognition. The hope is that more detailed subgroup 
analyses of this age group will shed more light on the risks and 
benefits of antihypertensive treatment in the oldest old.

It is possible that better treatment of vascular risk fac-
tors earlier in life will reduce the prevalence of frailty in late 
life. Aging is associated with a progressive increase in SBP 
that occurs in the setting of stiffening of the arterial system313 
(Effects of Hypertension on Cerebrovascular Structure and 
Function section). Indirect evidence suggests that aggressive 
treatment of early-life and midlife vascular risk factors may 
retard the progression of these pathological changes. Caloric 
restriction, low-sodium diet, increased levels of exercise, and 
low exposure to hypertension have all been associated with 
less arterial stiffening.314–318 If this is the case, then early treat-
ment of hypertension and other vascular risk factors may both 
lessen the need for antihypertensive therapy and increase its 
safety in late life.

Summary of Evidence
Direct evidence from randomized, clinical trials does not allow 
conclusive recommendations about treating hypertension 
throughout the life span to protect cognition. Observational 
studies suggest that hypertension causes an accumulating bur-
den of vascular injury across all stages of life, but paradoxi-
cally, the end stages of vascular disease in frail elderly patients 
may be marked by low BP. Such considerations support the 
use of antihypertensive therapy throughout middle age and 
then continued efforts at judicious control of BP in elderly 
patients who appear likely to tolerate it. Results of random-
ized, clinical trials are awaited to prove the likely hypothesis 
that good control of BP and other vascular risk factors across 
the life span will help to stem the tide of cognitive impairment 
and dementia that would otherwise be expected with a con-
tinually aging population.

Overall Summary and Future Directions
We have provided a broad overview of the cognitive impact of 
chronic hypertension. Hypertension disrupts the structure of 
cerebral blood vessels, promotes atherosclerosis, and impairs 
vital cerebrovascular regulatory mechanisms. These vascular 
changes increase the susceptibility of the brain to ischemic 

 by guest on June 22, 2017
http://hyper.ahajournals.org/

D
ow

nloaded from
 

http://hyper.ahajournals.org/


e82    Hypertension    December 2016

injury, especially in vulnerable white matter regions critical 
for cognitive function, and may promote AD pathology. The 
evidence to date points strongly to a deleterious influence of 
midlife hypertension on cognitive function in midlife and late 
life. Executive function and processing speed seem to be the 
cognitive domains most affected, but memory can also be 
impaired. Therefore, it can be difficult to differentiate VCI 
from AD solely on the basis of the neurocognitive deficits. 
Although the data are not conclusive, there is evidence of an 
association between higher late-life BP and better cognition, 
highlighting the complexities of recommending uniform lev-
els of BP across the life course. In addition to aging, meno-
pausal status, APOE ε4 genotype, insulin resistance, systemic 
inflammation, and other comorbidities may potentiate the 
cognitive decline in individuals with hypertension.

Less clear are the effects of hypertension treatment on 
cognitive function. Observational studies have demonstrated 
a cumulative effect of hypertension on cerebrovascular dam-
age, but evidence from randomized, double-blind, clini-
cal trials that treatment of high BP at any stage over the life 
course improves cognition is far from conclusive. An intrigu-
ing relationship has emerged between hypertension and AD, 
raising the prospect that a chronic elevation in BP aggravates 
AD pathology, contributing to dementia. These findings are 
critically important because they raise the possibility that 
treatment of hypertension may also contribute to reduce the 
development or progression AD. Because no evidence-based 
recommendations can be made at this time, treatment of high 
BP in midlife and judicious use of antihypertensives in late 
life, taking into account cerebrovascular status and comorbidi-
ties, seem justified.3

Our analysis of the evidence also revealed a number 
of knowledge gaps that need to be addressed to gain a bet-
ter understanding of the pathobiology and clinical impact 
of hypertension and to develop preventive and therapeutic 
strategies. One of the most promising aspects of an associa-
tion between hypertension and dementia, including AD, is 
the prospect of prevention or early treatment as a strategy 
to reduce downstream cognitive impairment. Indeed, given 
how prevalent hypertension is and that there are many acces-
sible and effective drugs, treatment of hypertension may 
prove to be one of the best ways to prevent or delay dementia. 
However, numerous questions and caveats remain. These are 
considered next.

How hypertension acts on cerebral arteries, the micro-
circulation, and other cellular elements in the neurovascular 
unit to produce changes in structure and function has not been 
fully elucidated. As we gain a better understanding of how 
the cells of the neurovascular unit and elsewhere interact to 
regulate cerebrovascular homeostasis and BBB permeability 
in the normal state, studies should also probe how hyperten-
sion interferes with the signaling pathways regulating such 
interactions in different districts of the cerebrovascular tree. 
The resulting knowledge may provide insight into the regional 
susceptibility of cerebral vessels to the effects of hyperten-
sion, that is, subcortical white matter and basal ganglia. The 
relative impact of the neurohumoral signals driving the ele-
vation in BP and the mechanical forces acting on the vessel 
walls to induce changes in vascular cells and the extracellular 

matrix need to be explored further. While elucidating how 
hypertension may lead to brain damage, these investigations 
could point to new therapeutic targets to prevent or ameliorate 
the deleterious effect of hypertension on the brain and may 
unveil class-specific effects on pathological processes driving 
cognitive impairment. Better use of available models and new 
experimental models that more closely reflect chronic hyper-
tension in humans may be needed to generate translationally 
relevant results.

A key question concerns how the structural and functional 
effects of hypertension on the brain lead to cognitive impair-
ment. WMHs and other brain lesions produced by SVD could 
reduce the connectivity, speed, timing, and spatial precision 
of the communication among brain regions critical for cog-
nition (eg, the prefrontal cortex, cingulated cortex, and sen-
sory regions), leading to psychomotor slowing and executive 
dysfunction.27 On the other hand, hypoperfusion and reduced 
neurovascular coupling could induce brain dysfunction by 
depriving the energy-demanding regions involved in cogni-
tion of oxygen and glucose.319 Hypertension-induced amyloid 
production and deposition could also play a role by promoting 
AD pathology. In the long run, whole brain and hippocampal 
atrophy are also likely to contribute by further reducing the 
processing power of the brain. Although these mechanisms 
are all plausible, supporting human data on their relative 
impact throughout the life course are lacking. Studies using 
connectomic-based approaches to investigate how hyperten-
sion affects brain networks in the presence or absence of struc-
tural damage (WMHs, silent strokes, etc) are now feasible and 
could provide new mechanistic insights. In addition, brain 
imaging approaches to investigate the relationship among 
CBF, cerebral energy metabolism, BBB permeability, and 
amyloid deposition could clarify the interaction among these 
different pathogenic factors and provide new biomarkers for 
risk assessment and early disease identification.

Whether treatment as early in the life course as possible, 
for example, hypertension in adolescence, would offer advan-
tages for dementia prevention or pose too many side effects or 
other risks that would offset early and aggressive treatment is a 
critical question. This is particularly a concern at the extremes 
of the life span. It may be that childhood or early adulthood 
treatment is not cost-effective or the side effects outweigh the 
advantages. Similarly, in very late life, aggressive treatment 
may be more problematic than helpful. Although it is chal-
lenging to conduct a trial that covers much of the life span, 
adding sensitive and state-of-the-art cognitive outcomes to 
ongoing hypertension studies would be cost-effective and 
highly informative. Furthermore, advanced statistical meth-
ods could be applied to existing data sets to gain additional 
insight and to help better plan future trials. Trials should also 
include biomarkers of AD and other dementias because they 
may be helpful surrogate markers and may suggest new ways 
to identify hypertensive individuals at increased risk for cog-
nitive impairment.

Related questions pertain to the trajectory of the cognitive 
decline in the hypertensive population and to the factors deter-
mining vulnerability. Although cognitive impairment is well 
documented in people with hypertension, little is known about 
the temporal dynamics of cognitive change in this population. 
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Prospective studies documenting the rate and timing of cogni-
tive changes and identifying factors that may predict cognitive 
decline, for example, adherence to BP medication regimens 
or BP control and development of other comorbidities, would 
be highly relevant. Furthermore, in the AD and diabetic pop-
ulations, brain changes may occur decades before cognitive 
changes.320,321 It is unknown when the brain is most vulnerable 
to the deleterious effects of hypertension. Prospective studies 
that use state-of-the-art neuroimaging techniques and prehy-
pertension samples would provide valuable insight into this 
brain-behavior relationship.

The effects of other comorbid illnesses, that is, clusters 
of comorbidities that combined with hypertension may have 
a greater cognitive impact, remain to be defined. It is well 
documented that multiple chronic illnesses, for example, dia-
betes mellitus, renal insufficiency/failure, and heart failure, 
are associated with cognitive impairment.3 Furthermore, 3 of 
4 individuals >65 years of suffer from ≥2 chronic illnesses 
(ie, multimorbidity).322 No research to date has examined the 
effect of multimorbidity on cognition; therefore, future stud-
ies should be designed around novel analysis techniques (eg, 
latent class analysis) to explore whether certain clusters of 
chronic illnesses are more predictive of cognitive impairment.

The cognitive tests that are most sensitive to changes in 
cognition across the life course also remain to be defined. As 
documented in this statement, cognitive tests vary dramati-
cally between studies, making comparison of findings across 
studies difficult. Furthermore, the most commonly used 
instrument, the MMSE, is a measure of global cognition and 
is not as sensitive to subtle but clinically significant changes in 
cognition as domain-specific measures.323 Given the inconsis-
tency in cognitive measures, it is difficult to determine which 
neuropsychological tests are most sensitive to the cognitive 
changes that occur within the hypertensive population. Studies 
to document the psychometric properties of comprehensive 
neuropsychological batteries are needed to better determine 
which cognitive measures are most sensitive in hypertension 
across the life span.

Although some studies provided hints that certain classes 
of antihypertensive drugs may be more effective at improv-
ing cognition or lowering cognitive decline, most of these 
studies were underpowered or without equivalent cognitive 
end points. To better guide treatment, much more informa-
tion will be needed on class of drugs and possibly how the 
efficacy of drugs may differ by sex and ethnicity. Future tri-
als should ensure a diverse population that is large enough 
to detect the efficacy of drugs on subpopulations and ensure 
that more uniform cognitive outcomes are used. The ques-
tion of the differential effect of treating SBP versus DBP is 
also understudied and has important clinical implications for 
risk assessment.

Furthermore, although the preponderance of evidence 
suggests that hypertension, especially at midlife, is a risk 

factor for late-life cognitive impairment and dementia, sev-
eral fundamental issues remain unanswered. Among these 
is how hypertension interacts with key pathogenic factors 
involved in neurodegeneration such as tau and Aβ in pro-
moting neurodegenerative disease.44,45 The complicated 
interplay between cerebrovascular dysfunction and the 
production and clearance of these proteins through trans-
vascular, perivascular, and paravascular pathways324,325 is 
an important area for further investigation. The role of the 
dural lymphatics326 in these clearance processes and the 
impact that hypertension has on lymphatic drainage remain 
to be assessed. These investigations may help address the 
role of hypertension in the alterations in amyloid trafficking 
observed in AD and in the evolution of neurodegeneration. 
With the advent of new neuroimaging techniques, especially 
amyloid and tau imaging, and biomarkers that can track pre-
clinical disease, it may be possible to assess these interac-
tions more readily.

In summary, basic, clinical, and neuropathological inves-
tigations have made remarkable progress in improving the 
understanding of the effect of hypertension on the brain 
vasculature and cognitive health, but much remains to be 
learned. Although there is substantial evidence that hyperten-
sion leads to cognitive impairment, an effect attributed to oxi-
dative stress-driven cerebrovascular dysfunction and damage, 
the underlying cellular and molecular mechanisms remain 
incompletely understood. In addition, a critically important 
question still unanswered is whether treating hypertension 
prevents or reverses cognitive decline. Whereas difficulties 
in carrying on longitudinal studies for decades have played a 
role, the lack of appropriate and uniform cognitive outcomes 
across studies has also been a complicating factor. A com-
plex relationship of hypertension with ethnicity, age, sex, and 
cerebrovascular risk factors has emerged, making it difficult 
to assess treatment effectiveness. The upcoming release of 
the results of the SPRINT-MIND trial may help fill some of 
these knowledge gaps. Despite numerous outstanding ques-
tions and caveats, personalized treatment of hypertension, 
taking into account age, sex, APOE genotype, metabolic 
traits, comorbidities, etc, remains a most promising and emi-
nently feasible approach to safeguard vascular health and, as 
a consequence, brain heath. Antihypertensive drugs are gen-
erally safe and widely available, but there is still much to be 
learned about how to best use them over the life course in 
the presence of comorbidities and whether specific classes 
of drugs may confer cognitive benefits beyond BP lowering. 
New discoveries in the cellular and molecular pathology of 
the cerebrovascular tree and associated cells, coupled with 
the use of new imaging tools, biomarkers, and genomic-
proteomic approaches in clinical trials, offer the prospect to 
address these unanswered questions and to develop new treat-
ments to mitigate the devastating impact of hypertension on 
cognitive health.
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