Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries

Celine Baron-Menguy, Valérie Domenga-Denier, Lamia Ghezali, Frank M. Faraci, Anne Joutel

Abstract—CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure–independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. (Hypertension. 2017;69:60-70. DOI: 10.1161/HYPERTENSIONAHA.116.08015.) ● Online Data Supplement

Key Words: CADASIL ■ cerebral small vessel diseases ■ Notch3 protein, mouse ■ stroke ■ vasodilation

Structural changes in small arteries and arterioles leading to smaller lumen and reduced maximal dilation are commonly seen in chronic hypertension in both patients and mice.1,2 These changes include various combinations of inward remodeling, hypertrophy, and increased stiffness depending on the vessel caliber and form of hypertension. Such changes are of particular importance because, although they can protect the downstream circulation against elevated pressure, they can be maladaptive, adversely affecting local blood flow by decreasing microvascular pressure and maximal vasodilator capacity, thereby contributing to an increased risk of vascular events.3-5 Mechanisms that control the development of such changes in arterial structure, particularly genetic determinants, are still poorly defined.

Cerebral small vessel diseases (cSVDs) are involved in about one-fifth of all strokes and account for ≤45% of cases of elderly dementia. The majority of cSVDs are sporadic, with age and hypertension deemed the most important risk factors.6 CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), caused by dominant mutations in the NOTCH3 receptor, is the most common inherited cSVD.7,8 Remarkably, CADASIL shares many of the clinical and pathological features of sporadic forms of cSVDs, except for its earlier age of onset and common occurrence in normotensive individuals.7 The well-established TgNotch3R169C mouse model of CADASIL expresses an archetypal CADASIL-associated NOTCH3 mutation that does not affect Notch3 signaling in vitro.9,10 TgNotch3R169C mice recapitulate the salient features of the disease, including deposition on brain vessels of the extracellular domain of NOTCH3 (Notch3ECD) and aggregates of other proteins in extracellular deposits called granular osmiophilic material.11 Interestingly, TgNotch3R169C mice exhibit a reduction in lumen diameter of maximally dilated cerebral arteries, despite the fact that blood pressure levels are normal, consistent with the clinical observation that CADASIL usually occurs in normotensive patients.11 Also, cerebral arteries exhibit attenuated pressure-induced constriction (myogenic tone), and cerebral blood flow hemodynamics are compromised.11,12
We and others recently demonstrated that mutant Notch3ECD triggers accumulation of vascular extracellular matrix proteins, including TIMP3 (tissue inhibitor of metalloproteinases-3), among others, which complex with Notch3ECD and are further deposited in granular osmiophilic material.\(^1\)\(^3\),\(^1\)\(^4\) Importantly, we have established that an elevated level of TIMP3 plays a key role in myogenic tone deficits and altered cerebral blood flow hemodynamics in the TgNotch3ECD CADASIL model.\(^1\)\(^5\) However, mechanisms that control structural changes in cerebral arteries in this model remain to be elucidated. Specifically, whether this defect is related to vascular deposition of Notch3ECD or extracellular matrix proteins is not known.

Recent reports have highlighted the role of the extracellular matrix, matrix metalloproteinases, and the actin cytoskeleton of smooth muscle cells (SMCs) in structural changes of small arteries leading to a smaller lumen.\(^2\)\(^,\)\(^3\),\(^1\)\(^7\) TIMP3, like other members of the TIMP family, is a key regulator of extracellular matrix–degrading metalloproteinases.\(^1\)\(^8\) Notably, complete elimination of TIMP3 in the mouse results in pathological dilation of mesenteric arteries with increased distensibility.\(^1\)\(^9\) The Notch3 receptor is predominantly expressed in arterial SMCs and is a critical regulator of the developmental formation of small arteries, especially in the brain.\(^2\)\(^0\),\(^2\)\(^1\) Importantly, both in vivo and in vitro studies have documented a role for Notch3 in the rearrangement of the SMC cytoskeleton.\(^2\)\(^0\) Motivated by these results, we here examined the possible role of TIMP3 and Notch3 signaling in mutant Notch3-mediated reductions in lumen diameter.

Methods

Experimental Animals

Genetically modified mice (Table) were bred and housed in pathogen-free animal facilities and fed a standard diet ad libitum with free access to water. All experiments were conducted in full accordance with French guidelines for the Care and Use of Laboratory Animals and were approved by the “La raboisie-Villen” Institutional Animal Care and Use Committee (C2EA 09), with every effort made to minimize the number of animals used. All mice were male, and all experiments were performed in accordance with ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments).

Statistical Analysis

Data are expressed as mean±SEM. Myogenic tone, passive diameter, cross-sectional area of the vascular media, and incremental distensibility were analyzed by 2-way repeated-measure analysis of variance (2-way RM ANOVA) and 1-way analysis of variance followed by Bonferroni or Tukey post hoc tests (2 groups) and 1-way analysis of variance followed by Bonferroni or Tukey post hoc tests (>2 groups). All statistics were performed using GraphPad Prism software. Differences with \(P\) values <0.05 were considered statistically significant.

A detailed description of experimental procedures is available in the online-only Data Supplement.

Results

Cerebral Arteries From TgNotch3R169C Mice Are Less Distensible With Reductions in Maximal Dilation

We first sought to better characterize structural and mechanical properties of cerebral arteries in TgNotch3R169C mice (Table). Potential causes for reductions in lumen diameter of maximally dilated arteries include inward remodeling (smaller diameter at all pressures), hypertrophy (larger cross-sectional area that encroaches on the lumen), or reductions in distensibility (increased stiffness).\(^3\),\(^4\) As previously reported,\(^1\) the passive diameter of cerebral arteries was significantly reduced in TgNotch3R169C mice compared with nontransgenic mice, over a range of physiological pressures for the cerebral circulation (=13% reduction at 50 mm Hg, but not at the lowest pressure (10 mm Hg). The external diameter was also significantly decreased, and the media thickness-to-lumen diameter ratio was significantly increased in TgNotch3R169C mice at 50 mm Hg (Figure S1 in online-only Data Supplement). In contrast, the cross-sectional area of the media was comparable between TgNotch3R169C mice and wild-type littermates at all pressures (Figure 1A). Notably, the stress–strain curves were shifted to the left, and incremental distensibility was significantly reduced at 25 and 50 mm Hg (Figure 1B and 1C). Together these data suggest that the reduction in maximal dilation of cerebral arteries in TgNotch3R169C mice is related to increased stiffness, although overt fibrosis had not been observed, even in aged mutant mice.\(^1\)

We next sought to determine the age of onset of these changes with respect to other disease manifestations. In mutant cerebral arteries, Notch3ECD accumulation is detectable in animals as young as neonates, and granular osmiophilic material deposits are present from the age of 5 to 6 months.\(^1\)\(^1\) We found that the passive diameter of cerebral arteries was already significantly reduced in 2-month-old TgNotch3R169C mice compared with nontransgenic mice, although it was less reduced than that aged 6 months (=6% versus 13% reduction at 50 mm Hg), noting that incremental distensibility was not significantly reduced at this age (Figure 1D). Interestingly, the myogenic tone of mutant arteries was unaffected at this age (Figure 1E). Thus, our results indicate that reduced maximal vasodilation in the TgNotch3R169C model is an early and gradually progressive defect.

Elevated TIMP3 Does Not Mediate Impairment of Maximal Vasodilation in TgNotch3R169C Mice

We next investigated the involvement of TIMP3 in the smaller lumen of TgNotch3R169C cerebral arteries. To achieve this, we used gain and loss-of-function genetic-interaction approaches (Table). We found that the passive diameter and stiffness of cerebral arteries were comparable in TgNotch3R169C mice with normal expression of TIMP3 (TgNotch3R169C; Timp3+/−) and TgNotch3R169C mice with reduced expression of TIMP3 (TgNotch3R169C; Timp3−/−), the latter of which are notable for their rescue of myogenic tone observed in TgNotch3R169C mice (Figure S2A–S2C).\(^1\)\(^5\) Moreover, the passive diameter of cerebral arteries was unaffected by genetic overexpression of TIMP3 in TgBAC-TIMP3 mice, which exhibited attenuated pressure-induced myogenic constriction (Figure S2D). Thus, excess TIMP3 does not contribute to the impairment of maximal vasodilation in the TgNotch3R169C model.
Expression of Notch3 Target Genes Is Increased in Cerebral Arteries of TgNotch3R169C Mice

We next evaluated the contribution of Notch3 signaling. To this end, we first analyzed the level of Notch3 activity in cerebral arteries of TgNotch3R169C and nontransgenic littermate mice. To control for the potential confounding effect of Notch3 overexpression, we analyzed TgNotch3WT mice, which overexpress similar amount of rat Notch3 protein, although with the wild-type sequence, and have preserved maximal vasodilation (Table). On ligand binding, Notch receptors undergo several proteolytic cleavages that release the Notch intracellular domain, which translocates to the nucleus, where it complexes with RBPJ (recombination signal binding protein for immunoglobulin Kappa J) to form an active transcriptional complex that turns on the expression of target genes.22

We recently identified a set of genes, including Notch3, HeyL, Nrip2, and Grip2, whose expression is regulated in SMCs of adult brain arteries by Notch3 activity.21,23 Quantitative reverse transcription polymerase chain reaction analysis of dissected cerebral vessels showed that, at 2 months of age, vascular expression levels of these genes were significantly upregulated in TgNotch3R169C mice compared with TgNotch3WT and non-Tg mice, with fold changes ranging from ≈1.4 to 1.7 (Figure 2).

Thus, these results indicate that expression of Notch3 target genes, an indicator of Notch3 activity, is increased by transgenic overexpression of the mutant R169C Notch3 but not by comparable overexpression of wild-type Notch3.

Cerebral Arteries of Notch3R170C/R170C Mice Display Increased Expression of Notch3 Target Genes and Reduced Lumen Diameter

To determine whether the presence of the R169C mutation in the endogenous Notch3 locus is sufficient to produce these same alterations, we analyzed Notch3R170C/R170C mice (Table). At 4 months of age, Notch3R170C/R170C mice exhibited robust Notch3ECD deposition in cerebral arteries, with the extent of deposition approaching that observed in 2-month-old TgNotch3R169C mice (Figure 3A). Importantly, we found that expression levels of Notch3, Nrip2, and Grip2 were significantly upregulated (1.2- to 1.3-fold) in cerebral arteries (Table). At 4 months of age, Notch3R170C/R170C mice exhibited a similar trend, although this difference did not reach statistical significance (Figure 3B). Moreover, the passive diameter of cerebral arteries from 4-month-old Notch3R170C/R170C mice was significantly decreased over a range of physiological pressures, although not at the lowest pressure, compared with

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TgNotch3R169C</td>
<td>Mice overexpressing a rat Notch3 protein with the R169C mutation (line 88), 4-fold over the endogenous Notch3</td>
<td>Characterize mutant Notch3-induced structural changes (Figure 1; Figure S1) and assess Notch3 activity in cerebral arteries (Figure 2)</td>
</tr>
<tr>
<td>TgNotch3WT</td>
<td>Mice overexpressing a rat Notch3 protein with the wild-type sequence (line 129), ≈4-fold over the endogenous Notch3</td>
<td>Analyze the involvement of excess TIMP3 in structural changes caused by the R169C mutation (Figure S2)</td>
</tr>
<tr>
<td>Non-Tg</td>
<td>Nontransgenic littermates</td>
<td></td>
</tr>
<tr>
<td>TgNotch3R169C,Timp3+/−</td>
<td>TgNotch3R169C mice with normal expression of TIMP3</td>
<td></td>
</tr>
<tr>
<td>TgNotch3R169C,Timp3−/−</td>
<td>TgNotch3R169C mice with reduced expression of TIMP3</td>
<td></td>
</tr>
<tr>
<td>Non-Tg,Timp3+/−</td>
<td>Nontransgenic mice with normal expression of TIMP3</td>
<td></td>
</tr>
<tr>
<td>Non-Tg,Timp3−/−</td>
<td>Nontransgenic mice with reduced expression of TIMP3</td>
<td></td>
</tr>
<tr>
<td>TgBAC-TIMP3</td>
<td>Mice overexpressing TIMP3</td>
<td></td>
</tr>
<tr>
<td>Notch3R169C/Timp3+/−</td>
<td>Mice with targeted insertion of the R169C mutation into the endogenous Notch3 locus</td>
<td>Assess the consequence of the presence of the R169C mutation in the endogenous Notch3 locus on the cerebral arteries (Figure 3)</td>
</tr>
<tr>
<td>Notch3R169C</td>
<td>Littermate mice with the wild-type Notch3 sequence</td>
<td></td>
</tr>
<tr>
<td>TgNotch3R169C,RbpjWT,Timp3+/−,SMMHC-CreERT2,Rbpjfl/fl;Rbpj+/− mice to generate TgNotch3R169C mice with SMC-specific deletion of Rbpj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TgNotch3R169C,RbpjWT</td>
<td>Tamoxifen-treated TgNotch3R169C,SMMHC-CreERT2,Rbpjfl/fl;Rbpj+/− mice to generate TgNotch3R169C mice with wild-type expression of Rbpj</td>
<td></td>
</tr>
<tr>
<td>Non-Tg,RbpjWT</td>
<td>Tamoxifen-treated non-Tg,SMMHC-CreERT2,Rbpjfl/fl;Rbpj+/− mice to generate nontransgenic mice with SMC-specific deletion of Rbpj</td>
<td></td>
</tr>
<tr>
<td>Non-Tg,RbpjWT</td>
<td>Tamoxifen-treated non-Tg,SMMHC-CreERT2,Rbpjfl/fl;Rbpj+/− mice to generate nontransgenic mice with wild-type expression of Rbpj</td>
<td></td>
</tr>
<tr>
<td>TgNotch3ΔE(BS6)-ECD</td>
<td>Tamoxifen-treated SMMHC-CreERT2;TgNotch3ΔE from line B to generate mice expressing a constitutively activated Notch3 receptor in SMC</td>
<td></td>
</tr>
<tr>
<td>TgNotch3ΔE(CS5)-ECD</td>
<td>Tamoxifen-treated SMMHC-CreERT2;TgNotch3ΔE from line C to generate mice expressing a constitutively activated Notch3 receptor in SMC</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>Tamoxifen-treated SMMHC-CreERT2; nontransgenic littermates from lines B and C were used as controls</td>
<td>Investigate the consequence of elevated Notch3 activity on cerebral arteries (Figure 5; Figures S3 through S6)</td>
</tr>
</tbody>
</table>

SMC indicates smooth muscle cell; and WT, wild type.
Baron-Menguy et al Notch3: A New Player in Cerebral Artery Structure

Notch3WT/WT littermate mice, noting that incremental distensibility was unchanged like in 2-month-old TgNotch3R169C mice (Figure 3C). Together, these data confirm that the R169C mutation causes increased expression of Notch3 target genes and impairment of maximal dilator capacity in cerebral arteries.

Genetic Reduction of Notch Activity in Arterial SMCs Protects Against Smaller Lumen Diameters in TgNotch3R169C Mice

We next sought to elucidate the contribution of elevated Notch3 activity to maximal vasodilation impairment caused by the Notch3 R169C mutant. Our previous work established that Notch3 is the predominant Notch receptor in SMCs of cerebral arteries and that RBPJ activity in these cells is predominantly mediated by Notch3 signaling.24 Hence, we generated and analyzed TgNotch3R169C mice with a tamoxifen-inducible deletion of Rbpj in SMCs together with their control TgNotch3R169C and non-Tg littermates (Table). Because Notch3 activity is critically required in the postnatal period,21 deletion of Rbpj in SMCs was induced at 2 months of age (ie, after normal completion of arterial development), and thus, at the beginning of arterial changes (Figure 4A).

Quantitative reverse transcription polymerase chain reaction analyses of the Notch3-regulated genes, Notch3, HeyL, Nrip2, and Grip2, confirmed that Notch3 activity was reduced in cerebral arteries from 6-month-old TgN3R169C;Rbpjdel-SMC and non-Tg;Rbpjdel-SMC compared with TgN3R169C;RbpjWT and non-Tg;RbpjWT mice (Figure 4B).

As expected, the passive diameter of cerebral arteries was substantially reduced in 6-month-old TgN3R169C;RbpjWT mice compared with age-matched non-Tg;RbpjWT mice, indicating that tamoxifen treatment and differences in strain background did not affect the TgNotch3R169C phenotype. Importantly, SMC deletion of Rbpj in TgNotch3R169C mice (TgN3R169C;Rbpjdel-SMC) from 2 to 6 months of age significantly attenuated the reduction

Figure 1. Characterization of mechanical and functional properties of cerebral arteries in TgNotch3R169C mice. Assessment of the media cross-sectional area (CSA; A), stress–strain relationship (B), and incremental distensibility (C) of the P2 segment of posterior cerebral arteries at different intraluminal pressures in 6-month-old TgNotch3R169C mice and nontransgenic (non-Tg) mice (n=7–9 mice/group). Assessment of passive diameter (PD; D) and myogenic tone (E) in 2-month-old TgNotch3R169C mice and non-Tg mice (n=6 mice/group). *P<0.05, **P<0.01 TgNotch3R169C vs non-Tg.
Despite the continuing progression of Notch3ECD deposition, mice protects against attenuation in maximal vasodilation, mice (Figure 4B). Although arterial blood pressure was not altered in TgNotch3E(C)Act-SMC mice (Figure S6). Notably, resting arterial blood pressure was not altered in TgNotch3E(C)Act-SMC mice (Figure S6).

![Graphs showing expression of Notch3 target genes in cerebral arteries of TgNotch3R169C mice](image)

Figure 2. Expression of Notch3 target genes is increased in cerebral arteries of TgNotch3R169C mice. Assessment of relative mRNA expression levels of the Notch3-regulated genes, Notch3, HeyL, and Grip2, in dissected cerebral arteries from 2-month-old TgNotch3R169C, TgNotch3WT, and non-Tg littermate mice (n=5 biological replicates/genotype). *P<0.05, **P<0.01, ***P<0.001.

Activation of Notch3 in SMCs Mimics R169C Mutant Notch3-Mediated Structural Changes in Brain Arteries

We then investigated whether moderately elevating Notch3 activity in arterial SMCs was sufficient to recapitulate arterial changes as observed in TgNotch3R169C mice. To this end, we developed a transgenic mouse model in which Notch3 becomes permanently activated in SMC on tamoxifen treatment (TgNotch3E(C)Act-SMC, Table). Previous reports have shown that truncated version of Notch receptors, including Notch3, in which the extracellular domain has been deleted (Notch3EΔ) behaves as constitutively activated receptor.**4 We generated transgenic mice carrying such truncated version of Notch3 under the control of the well-characterized arterial SMC-specific SM22α promoter,*4 in which expression of the TgNotch3EΔ transgene is repressed by a floxed stop codon-beta geo cassette, and obtained 2 lines (B and C) that we bred with the tamoxifen-inducible SMC Cre line, SMMHC-CreERT2 (Figure S3A–S3C). The SM22α promoter was chosen to achieve weak expression of the transgene and thus moderate activation of Notch3.*4

In the absence of tamoxifen, transgenic mice expressing β-galactosidase in brain arteries, albeit at a low level, but not the active Notch3 (Figure S3D). On tamoxifen treatment, the stop codon-beta geo cassette is excised (Figure 5A; Figure S3E), allowing expression of Notch3EΔ in cerebral arteries, with an estimated mRNA expression level <20% that of endogenous murine Notch3 mRNA in both lines (Figure 5B and 5C). Also, the Notch3-regulated genes Notch3, HeyL, and Grip2 were upregulated in both TgNotch3E(C)Act-SMC and TgNotch3EΔ(C)Act-SMC mice, with slightly higher upregulation in the TgNotch3E(C)Act-SMC line, whereas upregulation of Grip2 occurred only in TgNotch3EΔ(C)Act-SMC mice (Figure 5B and 5C). These findings confirm that Notch3 signaling is activated in the cerebral arteries of both lines and suggest that Notch3 activation in the TgNotch3E(C)Act-SMC mice is slightly more pronounced, consistent with the higher expression of β-galactosidase and Notch3EΔ in the TgNotch3E(C)Act-SMC mice (Figure S3D). Notably, the increase in Notch3-regulated genes was between 1.3- and 1.6-fold in TgNotch3EΔ(C)Act-SMC mice, the same range as that in cerebral arteries from TgNotch3R169C mice, suggesting a comparable level of Notch3 activation in these 2 models. A further histological analysis of semithin sections of cerebral arteries from TgNotch3EΔ(C)Act-SMC mice showed no overt alteration of SMCs in either line (Figure S4).

Importantly, we found that the passive diameter of cerebral arteries was significantly reduced in TgNotch3EΔ(C)Act-SMC mice of both lines, with a more pronounced reduction in TgNotch3EΔ(C)Act-SMC mice, compared with WT littermates (Figure 5D and 5E). Cross-sectional area of the media was comparable between TgNotch3EΔ(C)Act-SMC and WT mice (Figure 5F). Moreover, the stress–strain curve was slightly shifted to the left and incremental distensibility was significantly reduced at 25 mmHg in TgNotch3EΔ(C)Act-SMC mice (Figure S5). Notably, resting arterial blood pressure was not altered in TgNotch3EΔ(C)Act-SMC mice (Figure S6).

Thus, these results establish that moderate activation of
Notch3 in arterial SMCs of cerebral arteries is sufficient to recapitulate structural and mechanical changes observed in TgNotch3R169C mice. Collectively, our results suggest that the R169C Notch3 mutation increases Notch3 activity, and thereby causes reductions in maximal vasodilator capacity.

Discussion

A reduction in maximal dilation of cerebral arteries is an important feature in the well-established TgNotch3R169C mouse model of CADASIL, a genetic paradigm of cSVDs. Because of the pathological importance of such alteration in general...
and in particular in CADASIL owing to its occurrence in the context of unaltered blood pressure and compromised cerebral blood flow hemodynamics, we thought it especially important to understand its mechanism. There are several findings arising from the present study. First, cerebral arteries of TgNotch3R169C mice display altered mechanical and structural properties consistent with an increased stiffness, although no overt change in the composition of arterial wall had been detected, at least by optical microscopy analysis.11 On the basis of Poiseuille law, the magnitude of reduction in arterial caliber is expected

![Figure 4.](http://hyper.ahajournals.org/)

Figure 4. Genetic reduction of Notch activity in SMCs protects against reductions in maximal dilation of cerebral arteries in TgNotch3R169C mice. A. Schematic representation of the experimental design. B, TgN3^R169C;Rbpjdel-SMC were analyzed at 6 months of age for relative expression levels of Notch3, Nrip2, HeyL, Grip2, and TgNotch3 mRNAs in dissected cerebral arteries. Non-Tg;RbpjWT, TgN3^R169C;RbpjWT, and non-Tg;Rbpjdel-SMC mice served as controls (n=5 biological replicates/genotype). *P<0.05, **P<0.01, ***P<0.001 non-Tg;RbpjWT vs all other groups; #P<0.05, ###P<0.001 TgN3^R169C;RbpjWT compared with TgN3^R169C;Rbpjdel-SMC. C, Passive diameter of the P2 segment of posterior cerebral arteries was determined in 6-month-old TgN3^R169C;Rbpjdel-SMC mice. Control groups used were as described in B (n=9–10 mice/genotype). **P<0.01, ***P<0.001 TgN3^R169C;RbpjWT compared with non-Tg;RbpjWT; #P<0.05, ##P<0.01 TgN3^R169C;RbpjWT compared with TgN3^R169C;Rbpjdel-SMC. D, Passive diameters of pressurized (50 mm Hg) P2 segments of posterior cerebral arteries from 2-month-old TgN3^R169C;RbpjWT and 6-month-old TgN3^R169C;Rbpjdel-SMC and TgN3^R169C;RbpjWT mice (n=6–10 mice/genotype). E, Representative images of brain arteries coimmunostained with anti-Notch3ECD (red) and FITC-conjugated antismooth muscle α-actin (green) antibodies. Note that non-Tg;RbpjWT and non-Tg;Rbpjdel-SMC mice do not exhibit Notch3ECD deposits. Scale bar: 50 μm. F, Quantification of Notch3ECD deposits in immunostained images of cerebral arteries from mice of the indicated ages and genotypes (n=5 mice per genotype).
to have significant effects on vascular resistance, thus influencing local blood flow. Importantly, these alterations are similar to those reported in comparable cerebral arteries (second-order branches of posterior cerebral arteries and distal segments of the middle cerebral artery) of stroke-prone spontaneously hypertensive rats and hypertensive transgenic rats overexpressing mouse renin.⁴,²⁶ Such reductions in lumen diameter can reduce both submaximal and maximal vasodilation.²⁷ Second, we unexpectedly found that an elevated level of TIMP3 does not contribute to these alterations, despite its key role in mutant Notch3-induced cerebrovascular dysfunction. Third, using 2 distinct mouse models, we established that the archetypal R169C Notch3 mutation is associated with reduced maximal dilation of cerebral arteries and increased Notch3 activity. Fourth, we identified increased Notch3 activity as a heretofore-unrecognized regulator of cerebral artery structure and mechanics and provided evidence for a causal relationship between increased Notch3 signaling and smaller lumen diameter of cerebral arteries in the TgNotch3R169C CADASIL model.

Figure 5. Elevated Notch3 activity mimics R169C Notch3 mutant-induced structural changes. A, Schematic representation of the experimental design. TgNotch3ΔE(B)Act-SMC (B, D) and TgNotch3ΔE(C)Act-SMC (C, E) were analyzed at 18 weeks of age for relative expression levels of Notch3, Nrip2, HeyL, Grip2, and TgNotch3ΔE mRNAs in dissected cerebral arteries (B, C) and passive diameter of the P2 segment of the posterior cerebral artery (D, E). n=5 biological replicates/genotype in (B, C), and n=11 to 12 mice/genotype in (D, E). F, Assessment of the media cross-sectional area (CSA) in TgNotch3ΔE(C)Act-SMC and wild-type (WT) mice (n=11–12 mice/genotype). *P<0.05, **P<0.01, ***P<0.001 TgNotch3ΔEAct-SMC vs WT.
Before this work, CADASIL-associated NOTCH3 mutations have not been convincingly shown to alter Notch3 activity, apart from some uncommon mutations (present in ≈5% of families) located in or around the ligand-binding domain of Notch3 that unambiguously abrogate Notch3 signaling.28,29 Moreover, it was still unclear whether altered Notch3 signaling plays a role in disease manifestations. Here, we showed for the first time that R169C, an archetypal CADASIL mutation, unambiguously reduces Notch3 signaling activity in cerebral arteries. Importantly, the observation of unchanged Notch3 signaling activity in TgNotch3WT mice, taken together with the finding of similarly increased Notch3 activity in the Notch3R170C knock-in model, precludes the possibility of an effect of the mutation in the context of Notch3 overexpression. It is possible that the increase in Notch3 activity, which seems to be moderate in these 2 mouse models, has thus far gone essentially unnoticed because previous assays were inappropriate or insufficiently sensitive. The vast majority of CADASIL-associated NOTCH3 mutations lead to an odd number of cysteine residues within Notch3ECD, and the R169C mutation is located in the N-terminus of Notch3ECD, a mutation hotspot.8 Notably, this mutation has been identified in >35 CADASIL families worldwide and is associated with a typical phenotype.28 We thus surmise that other CADASIL mutations may similarly increase Notch3 activity.

The mechanism of increased Notch3 activity in cerebral arteries of TgNotch3R169C and Notch3R170C/R170C mice is puzzling. Previous reports have shown that the R169C mutation does not affect Notch3 signaling in cultured cells.9,10 However, it is noteworthy that extracellular deposition of Notch3ECD was not present in these in vitro assays. Recently, we showed that Notch3ECD accumulation in CADASIL occurs independent of ligand binding, suggesting that it may instead arise from a defect in Notch3 receptor trafficking.28,29 In Drosophila, misregulation of endosomal trafficking of the Notch receptor had been linked to its aberrant activation,30 a possibility that warrants investigation in CADASIL.

Our observation that genetic reduction of Notch3 signaling in TgNotch3R160C mice protects these mice against reductions in vascular lumen diameter supports a causative role of increased Notch3 signaling in this type of structural change. However, interpretation of this genetic loss-of-function study is complicated by the fact that any pharmacological or genetic manipulation aimed at decreasing Notch3 activity inevitably decreases the expression of the Notch3 receptor, given that Notch3 expression is regulated by Notch3 signaling.21 In fact, we found that TgNotch3R160C mice in which we genetically reduced Notch3 activity (TgN3R160C::RbpΔ6(SMC)) exhibited approximately a 50% reduction in the expression of the Notch3R160C transgene. Nevertheless, our data suggest that reduced transgene expression is not capable of accounting for the protection against changes in arterial diameter because it would also be expected to have an effect on Notch3ECD deposition; yet, Notch3ECD deposition progressed similarly in TgNotch3R160C mice with elevated (TgN3R160C::RbpΔ8) or reduced Notch3 activity (TgN3R160C::RbpΔ6(SMC)). More importantly, our gain-of-function experiments demonstrated that activation of Notch3 in brain arteries on the same order of magnitude as occurs in TgNotch3R160C mice is sufficient to recapitulate R169C Notch3 mutant-induced arterial changes. Therefore, our data collectively indicate that structural changes of cerebral arteries in TgNotch3R160C mice are not related to the extent of Notch3ECD deposition and provide support for a causative role of increased Notch3 activity, although we cannot rule out the possibility that other factors may be in play.

As discussed above, the R169C mutation and all similar mutations are predicted to be associated with increased Notch3 activity and smaller lumen diameters, whereas mutations in the ligand-binding domain of Notch3 are predicted to be associated with reduced Notch3 activity and to protect patients against these changes (noting that CADASIL mutations are present in a heterozygous state, Notch3 activity is predicted to be half-reduced in these latter patients). If hypertension is present, reductions in lumen diameter of cerebral arteries are both protective of downstream microvessels and detrimental. However, in the absence of hypertension like in the TgNotch3R160C model, it seems that these changes would only be detrimental. Therefore, the R169C mutation and all similar mutations are thus predicted to be associated with a more severe phenotype than those in the ligand-binding domain. Consistent with this prediction, our previous genotype–phenotype correlation study has revealed that CADASIL patients carrying a mutation in the mutational hotspot seem to have more severe cognitive decline than those with a mutation in the ligand-binding domain.28 Further analysis of the pathological weight of such vascular changes on stroke and cognitive decline in CADASIL could be valuable, although such studies are limited by the lack of an appropriate experimental model.

Although the molecular details of the mechanism responsible for Notch3-mediated structural changes remain unsettled, our previous work showed that Notch3 activation promotes the robust formation of actin stress fibers in cultured SMCs.20 Reductions in lumen diameter of maximally dilated arteries can be induced ex vivo by prolonged exposure of isolated arterial segments to vasoconstrictors. Importantly, studies using this paradigm have highlighted a role of the SMC actin cytoskeleton in the initial stage of the remodeling process, showing that smaller lumen diameter is associated with SMC actin polymerization and is reversed by actin depolymerization, with the possible involvement of the small GTPases, Rho/Rac/Cdc42.31 Further study will be necessary to elucidate the role of SMC actin polymerization in Notch3-induced lumen reduction and to establish mechanisms responsible for this effect.

Perspectives

CADASIL is a paradigmatic cSVD that commonly occurs in normotensive individuals. TgNotch3R160C mice, a well-established model of CADASIL, develop reduction in lumen diameter of cerebral arteries in the absence of chronic hypertension, and the magnitude of the reduction is in the same range as that seen with chronic hypertension. This change, which reduces vasodilator capacity, may adversely affect local cerebral blood flow and thereby contributes to the disease phenotype; yet, the underlying molecular mechanisms have remained unknown. The current study highlights an association between an unsuspected increase in Notch3 activity and the R169C archetypal CADASIL mutation and uncovers a previously unknown role
of increased Notch3 activity in structural changes that lead to smaller lumen diameter, that is, blood pressure–independent. We speculate that increased Notch3 activity and reduced vasodilator capacity are common features of many other Cadasil mutations. Further in-depth studies are needed to understand how increased Notch3 activity affects structure of cerebral arteries.

Acknowledgments

We are grateful to Charles Fouillette for technical assistance, Stephen Offermanns for providing the SMMHC-Cre2 line, Mieke Dewerchin for providing the Notch3R170C line, Tsakuo Honjo for providing the Rbpjflox/wt line, Heidi Stoeher for providing the Timp3−/− mice, University Paris Denis Diderot-site Villemin (Susanne Orville and Frédéric Baudin) for animal housing, and SEAT (Service des Animaux Transgéniques) transgenic mouse facilities (Cécile Gouget and Caroline Martin).

Sources of Funding

This work was supported by grants from the National Research Agency, France (ANR Genopath 2009-RAE09011HSA and ANR Blanc 2010-RPV11011HHA) to A.J. and the Fondation Leducq Agency, France (ANR Genopath 2009-RAE09011HSA and ANR Genopath 2009-RAE09111HSA). This work was supported by grants from the National Research Service of Veteran’s Affairs (BX001399). F.M.F. was supported by a grant from the French National Research Agency, France (ANR Genopath 2009-RAE09011HSA and ANR Genopath 2009-RAE09111HSA) to A.J. and the Fondation Leducq. M. Dewerchin received a grant from the Program de Recherche en Transgeniques (Paris). Mieke Dewerchin is supported by a Grant from the National Institute of Arthritis, Diabetes, Kidney, and Digestive Diseases (1R56DK097794-02). R.C. Siracusa was supported by an International Senior Research Fellowship from the British Heart Foundation (FS/10/03/27335). K. Bottcher was supported by the University of Osnabru predicting the function of the ECD domain of Notch3 for its role in the pathology of the CADASIL syndrome. A.J. is supported by the Fondation Leducq (ATVBAHA.111.237859).

Disclosures

A. Joutel owns 2 families of patents: gene involved in Cadasil, method of diagnosis and therapeutic application licensed to Athena diagnostics, and immunological treatment of Cadasil. The other authors report no conflicts.

References

Novelty and Significance

What Is New?
- The R169C CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy)-associated Notch3 mutation is linked to increased Notch3 activity in cerebral arteries.
- Increased Notch3 activity is sufficient to reduce maximal dilation of cerebral arteries, independent of increases in arterial blood pressure.
- Our findings provide evidence that reduction in maximal dilation of cerebral arteries induced by archetypal Notch3 mutants in CADASIL is mediated by increased Notch3 activity.

What Is Relevant?
- Mutations in the Notch3 receptor are responsible for CADASIL, the most frequent genetic cause of stroke and vascular dementia; yet, it is still unclear whether altered Notch3 signaling plays a role in disease manifestations. The well-established TgNotch3R169C mouse model exhibits unaltered blood pressure, but develops structural changes of cerebral arteries that reduce vasodilator capacity through an unknown mechanism.
- Our findings have important implications for the pathogenesis of CADASIL and the mechanisms that regulate pathological changes in structure of cerebral arteries that reduce vasodilator capacity.

Summary
This study establishes that the R169C archetypal CADASIL mutation is associated with changes in structure of cerebral arteries that reduce vasodilator capacity and increased Notch3 activity in cerebral arteries of 2 different mouse models. Conditional reduction of Notch activity in smooth muscle cells protects mice expressing the R169C mutation against these changes; conversely, conditional activation of Notch3 in smooth muscle cells recapitulates R169C mutant Notch3-induced structural arterial changes. Our findings provide new insight into the pathogenesis of CADASIL, supporting the concept that increased Notch3 activity mediates pathological changes in structure of brain arteries in CADASIL. This study uncovers an unsuspected role of Notch3 signaling in vascular remodelling that occurs independent of increases in blood pressure.
Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries
Celine Baron-Menguy, Valérie Domenga-Denier, Lamia Ghezali, Frank M. Faraci and Anne Joutel

Hypertension. 2017;69:60-70; originally published online November 7, 2016;
doi: 10.1161/HYPERTENSIONAHA.116.08015

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/69/1/60

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2016/12/07/HYPERTENSIONAHA.116.08015.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
ONLINE SUPPLEMENT

Title: INCREASED NOTCH3 ACTIVITY MEDIATES PATHOLOGICAL CHANGES IN STRUCTURE OF CEREBRAL ARTERIES

Running Title: Notch3: a new player in cerebral artery structure

Authors: Celine Baron-Menguy1,2, Valérie Domenga-Denier1,2, Lamia Ghezali1,2, Frank Faraci3 and Anne Joutel1,2

Affiliations

1 Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, U1161 and Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010, Paris, France

2 DHU NeuroVasc Sorbonne Paris Cité, F-75010, Paris, France

3 Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System Iowa City, IA, 52242, USA

Corresponding Author

Anne JOUTEL (Faculté de Médecine Paris Diderot, site Villem, 10 av de Verdun, 75010 Paris, France; Phone: 331 57278593, Fax: 331 57278594, E-mail: anne.joutel@inserm.fr)
Supplementary material and methods

Mouse strains

The transgenic (Tg) mouse lines, TgNotch3R169C (line 88) (FVB/N), TgNotch3WT (line 129) (FVB/N) 1, Rbpjin/flox (C57BL/6J) 2, SMMHC-CreERT2 (C57BL/6J) 3, Notch3R170C/WT (SV129: C57Bl/6) 4, as well as TgBAC-TIMP3 5, TgNotch3R169C;Timp3+/+, TgNotch3R169C;Timp3+/−, non-Tg;Timp3+/+ and non-Tg;Timp3+/−, the latter of which were littermates with the same hybrid background (88% FVB/N:12% C57Bl/6) 5 have been previously reported.

To generate TgNotch3R169C mice with tamoxifen-inducible deletion of Rbpj in SMC (TgNotch3R169C; SMMHC-CreERT2;Rbpjin/flox mice) we first crossed TgNotch3R169C mice with Rbpjin/flox mice, after which F1 TgNotch3R169C;Rbpjin/+ mice were mated with SMMHC-CreERT2;Rbpjin/flox mice, and F2 non-Tg;Rbpjin/+ mice were bred with SMMHC-CreERT2;Rbpjin/+ mice. The resulting TgNotch3R169C;SMMHC-CreERT2;Rbpjin/flox, non-Tg;SMMHC-CreERT2;Rbpjin/+ mice, all littermates in the same hybrid background (87.5% C57Bl/6: 12.5 FVB/N), were intraperitoneally injected with 100 µl of tamoxifen (150 mg/dL; Sigma-Aldrich, St Louis, MO, USA) dissolved in sunflower oil, at 9 weeks of age for 5 consecutive days to produce TgNotch3R169C mice with SMC-specific deletion of Rbpj (TgN3R169C;Rbpjdel−SMC), non-transgenic mice with the same Rbpj deletion (non-Tg;Rbpjdel−SMC), wild-type Rbpj-expressing TgNotch3R169C (TgN3R169C;RbpjWT) and non-transgenic (non-Tg;RbpjWT) mice respectively.

TgNotch3ΔE mice were generated as follows. The SM22α-loxP-lacZ-neo-loxP-Notch3ΔE-pA construct encoding a constitutively active Notch3 receptor 6 was generated by ligating the 2.1-kb SM22α promoter with a 0.6-kb β-globin intron, a 4.9-kb lacZ-neo fusion gene cassette (beta-geo) flanked by two loxP sites, a 2.3-kb human NOTCH3 cDNA encoding the signal peptide joined to amino acids 1617–2321 of NOTCH3, a 1.3-kb IRES-EGFP cassette and a β-globin polyadenylation signal. The resulting construct was cloned into the pCCLL2 vector. The fidelity of the final product was determined by restriction enzyme fragment mapping and gel electrophoresis, PCR, and DNA sequencing. The plasmid was subsequently digested with the unique cutter PacI, and the purified linear DNA construct was microinjected into oocytes of C57BL/6/DBA2 mice. Two heterozygous transgenic lines—B and C—were established based on their vascular expression pattern and level of β-galactosidase gene expression (Figure S3D in online-only material). Integration of the transgene at a single site was confirmed in both lines by Southern blot analysis of genomic DNA. TgNotch3ΔE(C) mice were backcrossed at least six times onto a C57Bl/6 background and maintained on this background. The TgNotch3ΔE(B) line, which was associated with prenatal lethality in males on a C57Bl/6 background, was further backcrossed at least six times onto a DBA2 background and maintained on this background.

Mice expressing an activated form of Notch3 (Notch3ΔE) in SMCs were generated by breeding TgNotch3ΔE mice from lines B and C with SMMHC-CreERT2 mice, followed by intraperitoneal injection of the resulting SMMHC-CreERT2;TgNotch3ΔE mice with 100 µl of
tamoxifen (150 mg/dL) to produce mice with activated Notch3 in SMC (TgNotch3ΔEAct-SMC). Littermate SMMHC-CreERT2; non-Tg mice from respective lines injected with tamoxifen served as controls.

All mice were male including 23 TgNotch3R169C, 10 TgNotch3WT and 25 non-Tg littermates; 40 TgNotch3R169C;Timp3+/+, TgNotch3R169C;Timp3+/−, non-Tg;Timp3+/− and non-Tg;Timp3−/−; 15 TgBAC-TIMP3 and non-Tg littermates; 30 Notch3R170C/R170C and Notch3WT/WT; 65 TgNotch3R169C;SMMHC-CreERT2;Rbpjlox/lox non-Tg;SMMHC-CreERT2;Rbpjlox/lox, TgNotch3R169C;SMMHC-CreERT2;Rbpj+/− and non-Tg;SMMHC-CreERT2;Rbpj+/− mice; 60 SMMHC-CreERT2;TgNotch3ΔE and SMMHC-CreERT2;non-Tg littermate mice.

Genotyping
Genotyping analyses were performed by PCR using the following primer pairs: TgNotch3R169C, 5’-TCA AC↓G CCT TCT CGT TCT TC-3’ (forward) and 5’-AAT ACC GTC GTG C↓T CTT (reverse); TgBAC-TIMP3, 5’-CCA GGA GAC AGC AAG TAG CC-3’ (forward) and 5’-GCT GCT GTT TAG GGA TCT GC-3’ (reverse); Timp3 wild-type allele, 5’-TTC AGT AAG ATG CCC CAC G-3’ (forward) and 5’-TAC ATC TTC ATG C CAC G-3’ (reverse); Timp3 knockout allele, 5’-TTC AGT AAG ATG CCC CAC G-3’ (forward) and 5’-ATG TGG AAT GTG TGC GAG G-3’ (reverse); Rbpjlox/lox allele, 5’-GGT CTT AAC CTG TTG GTG ACC-3’ (forward) and 5’-GGG CTG CTA AAG CGC ATG-3’ (reverse); Rbpj wild-type allele, 5’-GGT CTT AAC CTG TTG GTG ACC-3’ (forward) and 5’-GGT CTT AAC CTG TTG GTG ACC-3’ (forward) and 5’-GTT ATG TGG AAT GTG TGC GAG G-3’ (reverse); SMMHC-CreERT2, 5’-TGG AGC CAT TTC GCA ACC-3’ (forward) and 5’-AGT CCC CAT CCT TTC ACT CC-3’ (forward) and 5’-GGG CTG CTA AAG CGC ATG C-3’ (reverse); TgNotch3ΔE, 5’-ATG GCT TCA CCC CGC TAA TG-3’ (forward) and 5’-AGC CAG GTG CAA AGC ATG CT-3’ (reverse).

Measurements of structure, mechanics and myogenic tone of cerebral arteries

After overdosing with CO\textsubscript{2}, mice were decapitated and their brains were harvested. Arterial segments (P2) of the posterior cerebral artery (part of the pial circulation) were dissected, cannulated on glass micropipettes in an organ chamber containing physiological salt solution (PSS) maintained at 37°C (pH 7.4), and pressurized using an arteriograph system (Living Systems Instrumentation, Inc., St. Albans, VT, USA) as previously described.5

Arterial images were captured at each pressure level, from 10 to 100 mmHg, in nominally Ca2+-free PSS containing EGTA (2–5 mmol/L; Sigma) to eliminate myogenic tone using a CCD camera and VideoCap software (Gregory Hargous, France). Internal lumen diameter and media thickness were assessed at 3–5 different points along the artery using ImageJ software (v1.49g; Fiji Distribution, NIH); mean values were used in subsequent calculations. Calibration images were obtained using a micrometer slide placed inside the organ chamber with the upper side set at the level of the two glass micropipettes. From internal lumen diameter (D) and media thickness (M) measurements, given in micrometers, the following parameters were calculated:

\[
\text{Media cross-sectional area, } CSA = \pi/4 \times [(D+2M)^2 - D^2]).
\]

Circumferential strain, \(\varepsilon = (D-D_0)/D_0\), where D is the observed lumen diameter for a given intraluminal pressure and D\textsubscript{0} is the original diameter measured at 10 mmHg.
Circumferential stress, $\sigma = \left[(PD)/(2M)\right]$, where P is the intraluminal pressure (dynes/cm2). Pressure was converted from millimeters of mercury to dynes per square centimeter: 1 mmHg = 1.334 X 103 dynes/cm2.

Incremental distensibility, represents the percentage of change of the arterial internal diameter for each mmHg change in intraluminal pressure, $ID = \left[(D-D_0)/(D_0 \times \Delta P)\right] \times 100$.

Myogenic tone was analyzed as previously reported and expressed as the percentage of passive diameter ($[(\text{passive diameter} – \text{active diameter})/\text{passive diameter}] \times 100$).

Blood pressure measurement

Blood pressure was non-invasively measured by determining the tail blood volume with a volume pressure recording sensor and an occlusion tail-cuff (CODA System; Kent Scientific Corporation, Torrington, CT). Mice were placed in warmed restraining chambers and acclimatized to the experimental procedure for 2 weeks before data acquisition. After the first 10 data points were discarded, readings were recorded for at least 10 cycles on three consecutive days.

RNA preparation and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses

After dissecting cerebral arteries under a microscope, RNA was extracted and immediately snap frozen in liquid nitrogen, and stored at -80°C until use. Individual samples were prepared by pooling brain arteries from two mice. qPCR was performed as previously described. Expression levels were normalized to that of β-actin.

The following primer pairs were used: rat Notch3 transgene, 5’-CTC CCT GGC TTC TCT CTC-3’ (forward) and 5’-GGT CAG CCC CTA CCC ATT-3’ (reverse); Notch3ΔE transgene, 5’-CCC TTG TCT GTT CCC AGC TC-3’ (forward) and 5’-AGC GTC TCA GGC CAA CAC TT-3’ (reverse); murine Notch3, 5’-ATT TGA GGG GTG CTA AAG TG-3’ (forward) and 5’-GAA GGCTGGACAGAGAA-3’ (reverse); Nrip2, 5’-GGG AAG AAT GTG TGG AGT GG-3’ (forward) and 5’-AAG GCA GCA ATG CCA GGT CTT-3’ (reverse); Grip2, 5’-GGG CAC CAA ACC AAC TAA GA-3’ (forward) and 5’-CCA CAC ACC AGA AAT CCA GA-3’ (reverse); HeyL, 5’-CCCCTACCCCTACTACCCAA-3’ (forward) and 5’-GCT TCA ACC CAG ACC CAA G-3’ (reverse); β-actin, 5’-CTG CGT CTG GCT CTA CTG A-3’ (forward) and 5’-ACG CAC GAT TTC CCT CTC A-3’ (reverse).

β-galactosidase staining

Whole-mount staining for β-galactosidase activity was performed as described previously.

High-resolution microscopy

Arteries and surrounding brain tissue were dissected under a microscope, fixed in CARSON solution, and embedded in Epon E812 resin while maintaining the cross-sectional orientation, as described previously. Samples were cut into 1-μm sections, stained with toluidine blue, and examined under a Leica DMR microscope.

Immunohistochemistry
Acetone-fixed cryosections (12-µm-thick, n=9 sections/mouse) were incubated overnight at 4°C with rabbit polyclonal anti-Notch3ECD primary antibody raised against EGF repeats 17–21 of rat NOTCH3 (1:16,000), followed by detection with Alexa 594-conjugated anti-rabbit secondary antibody (1:500; Life Technologies, Saint Aubin, France) and fluorescein isothiocyanate (FITC)-conjugated anti-smooth muscle α-actin primary antibody (1:1000, clone 1A4; Sigma-Aldrich) to identify arteries.

Quantification of Notch3ECD deposits

Stained sections were imaged with a Nikon Eclipse 80i microscope (Nikon, Champigny sur Marne, France) at 60x magnification. Images were captured using an Andor Neo sCMOS camera and NIS Elements BR v 4.0 software (Nikon), with identical settings across compared groups. The entire procedure was performed using pre-fixed parameters under blinded conditions. Notch3ECD deposits were quantified on maximal-intensity projections of image stacks using ImageJ software (v1.49g; Fiji Distribution, NIH) following a semi-automated procedure that includes three main steps: (1) manual delineation of pial arteries on the smooth muscle α-actin channel followed by measurement of vessel area; (2) background suppression on the Notch3ECD channel; and (3) automatic detection of Notch3ECD deposits within vessel borders using a local maxima approach. Results were expressed as the area of Notch3ECD deposition divided by the vessel area.
Supplementary references

Figure S1: Mechanical and structural properties of cerebral arteries in TgNotch^{3R_{169C}} mice.

Internal diameter of P2 segments of posterior cerebral arteries were analyzed, in conditions that block the development of myogenic tone, in 6-month-old TgNotch^{3R_{169C}} mice and non-transgenic mice (non-Tg) at different intraluminal pressures (A). Assessment of internal diameter (B), media thickness-to-internal diameter ratio (C), external diameter (D), and media thickness-to-external lumen diameter ratio (E) at 50 mmHg. Significance was determined by two-way repeated measures ANOVA followed by Bonferroni post hoc tests (A) or by unpaired Student’s t-test (B-E) (**P<0.001 compared with non-Tg, n=7–9 mice/genotype).
Figure S2: Excess TIMP3 does not contribute to R169C mutant Notch3-induced structural changes of cerebral arteries.

Assessment of the passive diameter (A), incremental distensibility (B) and media stress-strain relationship (C) of the P2 segment of posterior cerebral arteries at different intraluminal pressures in 6-month-old double-mutant TgNotch3R169C;Timp3+/− mice, with Timp3 haploinsufficiency in the context of Notch3R169C overexpression; non-Tg;Timp3+/−, non-Tg;Timp3−/−, and TgNotch3R169C;Timp3+/− mice were included as controls (n=9–10 males/genotype). D, Passive diameter of the P2 segment of posterior cerebral arteries was analyzed in 6-month-old TgBAC-TIMP3 mice and non-Tg littermates. Significance was determined by two-way repeated measures ANOVA followed by Bonferroni post hoc tests. (n=7–8 males/genotype)
Figure S3: Generation of a mouse model with tamoxifen-inducible activation of the Notch3 receptor in arterial SMCs.

Schematic representation of full-length Notch3 and Notch3ΔE proteins (A), Notch3ΔE transgene (B), and the breeding protocol (C). D, Representative images of β-galactosidase activity in cerebral arteries of 1-month-old SMMHC-CreERT2, non-Tg, SMMHC-CreERT2, TgNotch3ΔE mice from lines B and C (n=3 mice/genotype). E, Schematic representation of the deletion of the beta-geo stop cassette upon tamoxifen treatment, thereby leading to Notch3ΔE expression.
Figure S4: Activation of the Notch3 receptor in arterial SMCs does not produce overt abnormalities in smooth muscle.

Representative images of semi-thin sections of pial arteries from TgNotch3ΔE(B)Act-SMC and TgNotch3ΔE(C)Act-SMC mice and control (WT) mice at 18 weeks of age (n=3 mice/genotype) stained with toluidine blue. Note that arterial diameters on these images are not representative of the passive diameter because SMCs were not deactivated prior to sacrifice. Scale bar = 50 μm.
Figure S5: Mechanical properties of cerebral arteries in TgNotch3ΔE(C)Act-SMC

Assessment of the media stress-strain relationship (A) and incremental distensibility (B) of the P2 segment of posterior cerebral arteries at different intraluminal pressures in TgNotch3ΔE(C)Act-SMC and control mice (n= 11-12 mice/genotype). Significance was determined by two-way repeated measures ANOVA followed by Bonferroni post-hoc test. (** P< 0.01 compared with WT).
Figure S6: Elevated Notch3 activity in arterial SMCs does not alter systemic blood pressure. Assessment of the systolic blood pressure in TgNotch3ΔE(C)Act-SMC and WT littermates. Significance was determined by unpaired Student’s t-test (n=7–8 mice/genotype).