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Different is the impact exerted by hypertension on age-
related endothelial dysfunction. Exposure to hypertensive 
disease, although inducing an early impairment of endothelial 
function, however, does not worsen the age-associated reduc-
tion of NO availability. Accordingly, with advancing age, the 

progressive NO impairment runs in 2 parallel lines in HT and 
NT. Moreover, no significant age–hypertension interaction 
emerged. Taken together, these data indicate that hypertension 
anticipates the age-related endothelial dysfunction, a phenom-
enon identified as an early vascular aging, but such deleterious 

Figure 5. Representative 
photomicrographs of small 
arteries showing the distribution 
pattern of Sirius Red–stained 
collagen �bers and Fast Green–
stained noncollagen proteins 
in young (<30 years) and old 
(>60 years) normotensive (NT) 
and hypertensive (HT) patients 
(n=5 each). The quanti�cation 
of collagen �bers is expressed 
as percentage of positive pixels 
(PPP) calculated on the whole wall 
vessel area examined. Column 
graphs display the mean values of 
PPP±SD. Scale bar, 50 μm.

 by guest on O
ctober 19, 2017

http://hyper.ahajournals.org/
D

ow
nloaded from

 



Bruno et al    Hypertension and Vascular Aging    77

effect remains constant with advancing age. This is supported 
by the fact that hypertension duration does not affect the age-
related decline in endothelial function: indeed, in a multiple 
regression model, only age, but not hypertension duration, is 
associated with inhibition by L-NAME on Ach.

Although the impaired NO availability represents the 
common final effect, different mechanisms seem to be 
adopted by aging and hypertensive disease. Indeed, in con-
trast to what is seen in NT, vessels from HT showed an early 
and progressive detection of superoxide generation. These 
findings agree with our functional experiments, showing a 
progressive potentiating effect of the antioxidant tempol on 
Ach-evoked relaxation in HT, whereas its effect among NT 
was detectable only in the oldest subgroup. Therefore, it is 
conceivable that in NT up to the age of 60 years, a primary 
alteration in the substrate of NO generation (ie, L-arginine) 
seems to be responsible for endothelial dysfunction, with 
superoxide playing a role in advanced age only. In HT, the 
reduced NO availability is largely caused by oxidative stress, 
which shows up decades earlier than in NT. These data are 
in line with previous data showing that L-arginine was able 
to potentiate the endothelial function in young NT, while in 
>60-year-old individuals, it was no longer effective. On the 
contrary, among HT, the beneficial effect of L-arginine disap-
peared earlier, and endothelial dysfunction was reversed only 
by an antioxidant compound.4,35

In conclusions, in small resistance arteries, physiological 
aging shows a progressive eutrophic vascular remodeling and 
a reduced NO availability. In advanced age, some degree of 
oxidative stress and fibrosis emerge. In hypertensive patients, 
NO availability is early reduced, but the progression rate with 
age seems to be similar. Conversely, structural alterations are 
mainly characterized by enhanced collagen deposition, likely 
driven by intravascular ROS, and the progression rate with age 
is steeper.

Perspectives
The reduced NO availability favors the atherosclerotic dis-
ease. As well, vascular structural change predicts cardiovas-
cular events in high-risk populations. Although limited by the 
cross-sectional design, which does not allow us to fully elu-
cidate the interaction between the hypertensive disease and 
aging, our findings may contribute to improve our knowledge 
of the vascular biology of ageing.
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What Is New?
•	Age induces an eutrophic vascular remodeling, with a switch toward a 

hypertrophic remodeling in the advanced age. Collagen deposition is the 
major contributor.

•	Hypertension amplifies the degree of hypertrophic remodeling, determin-
ing a steeper progression rate over time. Collagen deposition and oxidant 
excess contribute.

•	Hypertension anticipates, without worsening, the progressive reduction 
of nitric oxide availability associated with aging.

What Is Relevant?
•	Our findings contribute to improve our knowledge on age-related vascu-

lar changes at the level of peripheral microcirculation and the impact of 
hypertensive disease on such alterations.

Summary

In small arteries, advancing age is associated with an eutrophic 
remodeling, with a slight switch toward a hypertrophic remodeling 
in the advancing age. Vascular collagen deposition is a contribu-
tor. The hypertensive disease anticipates and strongly amplifies the 
degree of hypertrophic remodeling, determining a steeper progres-
sion rate over time. Major contributors of such vascular changes 
are collagen and reactive oxygen species excess. Hypertension 
also anticipates the age-related reduction in nitric oxide availability, 
but the progression rate with age seems to be similar.

Novelty and Significance
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Supplemental Methods 

 

Study population.  

 

Essential hypertensive patients and normotensive patients were recruited among consecutive 

individuals, referred to the Department of Clinical and Experimental Medicine or the 

Department of Surgery of the University of Pisa, who underwent laparoscopic surgery for 

cholecystectomy caused by gallbladder stones or adrenalectomy for a benign and non-

functioning adrenal mass over 3.5 cm in size.   

Venous blood samples were taken with the participants in the supine position, for standard 

hematology and serum biochemistry tests. 

With respect to hypertensive patients, the major inclusion criterion was a clinic blood 

pressure value (after 10 minutes of rest) >140/90 mmHg, confirmed on 2 separate occasions 

within 1 month, according to current European Guidelines. Secondary forms of hypertension 

were excluded by routine diagnostic procedures, including morphological and hormonal 

investigations when adrenal mass was detected. Other exclusion criteria included clinical or 

biochemical evidence of thyroid dysfunction, ethanol consumption (more than 60 g per day), 

dyslipidemia, diabetes mellitus, smoking, body mass index >30 kg/m2, renal or liver 

impairment, and established cardiovascular disease. Patients were never treated for 

hypertension  or they had not received any medication for at least 15 days before enrollment 

in the study. Previous antihypertensive treatment is detailed in Table S2. 

Among women in postmenopausal status, no one was receiving hormone replacement 

therapy. Among those in fertile status, no one had received hormone treatment or had a 

pregnancy for > 6 months before the study. 

 

Preparation, Mounting and Measurements in Small Arteries  

 

Small arteries (150 to 300 µm) were isolated from subcutaneous tissue immediately after 

biopsy sample procurement and mounted on a pressurized myograph. Vessel segments (  2 

mm long) were mounted onto 2 glass cannulas, one of which was positioned until the vessel 

walls were parallel, and equilibrated in physiologic salt solution (mmol/L: NaCl 120, NaHCO3 

25, KCl 4.7, KH2PO4 1.18, MgSO4 1.18, CaCl2 2.5, EDTA 0.026, and glucose 5.5) bubbled 
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continuously with 95% air and 5% CO2 to achieve pH 7.4 at 37°C. Vessels were pressurized at 

60 mm Hg. All functional experiments were performed by measuring dilatory responses to 

agonists in vessels precontracted with norepinephrine (NE, 10-6 mol/L). The dose of 1 µM NE 

was chosen after preliminary experiments of concentration-response curves to NE (from 1 nM 

to 100 µM) in vessels from normotensive subjects and hypertensive patients. Vessels from the 

two groups showed concentrations-dependent contractions to the first four concentrations of 

NE (from 1 nM to 1 µM), resulting in 50-60% of vessel contraction at the dose of 1 µM, 

similarly in healthy condition or hypertensive disease.  

Media cross-sectional area (CSA) was obtained by subtraction of the internal CSA from the 

external CSA: CSA = (π/4) x (De2 - Di2) where De and Di are external and lumen diameters, 

respectively. 

The remodeling and growth indices were also calculated. The remodeling index quantifies how 

much of the vascular structural alteration may be explained by a rearrangement of the same 

material around a narrowed lumen, without cell growth. The growth index quantifies the 

relative component of vascular smooth muscle cell growth. 

The remodeling index was calculated as 100x[(Di)n-(Di)remodel]/[(Di)n-(Di)h] where (Di) 

indicates internal diameter; n, normotensive control group (< 30 years); h, normotensive older 

groups or hypertensive vessels. (Di)remodel=[(De)h2-(4xCSAn/)]0.5, where (De)h is the external 

diameter of normotensive older groups or hypertensive vessels and CSAn was the CSA of 

normotensive control vessels. 

The growth index was calculated as (CSAh-CSAn)/CSAn, where CSAn was media CSA of 

normotensive control group (< 30 years), and CSAh was media CSA of normotensive older 

groups or hypertensive vessels. 

 

Detection of vascular superoxide anion generation.  

 

The in situ production of superoxide anion was measured by means of the fluorescent dye 

dihydroethidium (DHE; Sigma). Three slides per segment were analyzed simultaneously after 

incubation with Krebs solution at 37°C for 30 min. Krebs-HEPES buffer containing 2 μM DHE 

was then applied to each section and evaluated under a Leica TCS SP8 confocal laser-scanning 

microscope (Leica Microsystems, Mannheim, Germany) using a 561-nm excitation wavelength 

laser. All frames (2.048x2.048 pixels) were captured by means of  microscope with 20 x 




