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supports this view with an emphasis on EF1, representing 
the extent of early myocyte shortening, as a potential pri-
mary determinant of subsequent events in systole and dias-
tole. It demonstrates that profound degrees of early systolic 
dysfunction resulting in a reduction in EF1 of >25% are 
seen in the absence of any change in overall EF. The sus-
tained contraction that is seen in association with a reduced 
EF1 may represent a compensatory mechanism to maintain 
the overall EF, so that this is preserved even in the face of 
marked early systolic dysfunction. A link between early 
systolic and diastolic dysfunction mediated by a reverse 
of the shortening deactivation phenomenon would explain 
why E/E′ is prolonged after myocardial infarction and after 
angioplasty and is a good predictor of outcome after events 
such as these25,26 that would not necessarily be expected to 
impact on diastolic relaxation per se.

Our study is subject to several important limitations. 
First, our conclusions relate only to hypertensive subjects. 
We studied these because of the importance of hyperten-
sion as a risk factor for heart failure with preserved EF and 
relatively modest departure from normal physiology. Further 
studies will be required to establish the nature of the link 
between early systolic dysfunction, sustained myocardial 
contraction, and impaired diastolic relaxation in cardiomy-
opathies of differing etiologies and severity, particularly 
those with preserved EF. Conclusions on causality cannot 
be drawn from the cross-sectional observations, although 
effects of nitroglycerin and biological plausibility support 
a causal role of EF1. We used noninvasive estimates of LV 
pressure and wall stress that are limited by the calibration 
of noninvasive BP. However, although calibration errors 
might influence absolute values, they are less likely to influ-
ence the relative timing of wall stress. Our measurement of 

reflection coefficient may be limited by rectified reflections.27 
Doppler flow velocity measurements are subject to varia-
tion because of probe position which could have confounded 
our measurements of impedance, although such variation 
would likely be randomly distributed across the comparator 
groups. Our measures of ventricular volumes were obtained 
from a single plane across the ventricle and thus provide a 
2D measure of shortening. Three-dimensional imaging will 
be required to determine whether alternative measures per-
form similarly and to assess first-phase ejection in subjects 
with regional wall abnormalities. Although diastolic function 
could relate to total circumferential or longitudinal strain28 
which, because of compensatory changes may be abnormal in 
hypertension despite preserved overall EF, we found no sig-
nificant relationship between E/E′ and GLS, a more sensitive 
measure of impaired total shortening than overall EF.29 This 
underlines the importance of early rather than total shorten-
ing as a potential determinant of diastolic function at least as 
measured by E/E′. Although we observed a stronger relation-
ship between EF1 and E/E′ than between first-third EF and 
E/E′, further studies will be required to establish whether EF1 
is a better measure of shortening deactivation than other older 
measures such as first-third EF and to determine the features 
of diastolic function (other than E′ and E/E′) that are most 
closely associated with early systolic dysfunction.

Perspectives
A stress- or length-dependent locking of myosin motors 
onto the thick filament of the cardiac myocyte, a length-
dependent reduction in myofibrillar calcium sensitivity, and 

Table 3.  Effects of Nitroglycerin on Blood Pressure, Systolic, 
and Diastolic Function

Measures Baseline Systemic NTG Difference P Value

Heart rate and blood pressure

 ��� Heart rate, bpm 63.9±2.6 67.4±3.2 3.6±1.3 0.017

 ��� SBP, mm Hg 151±7 145±6 −6±2 0.027

 ��� DBP, mm Hg 90±4 82±4 −8±1 <0.001

 ��� MAP, mm Hg 112±5 99±5 −13±1 <0.001

LV dynamics

 ��� EDV, mL 105.9±7.6 93.8±7.5 −12.1±3.7 0.004

 ��� SV, mL 58.4±4.8 54.8±4.7 −3.6±2.6 0.174

 ��� EF (%) 55.6±2.9 59.1±2.2 3.5±1.8 0.072

 ��� EF1 (%) 15.2±1.8 20.3±2.6 5.0±1.8 0.011

 ��� T1, ms 97.6±3.3 110.9±6.6 13.3±1.3 0.158

 ��� TOR (%) 41.7±3.6 32.5±1.7 −8.2±3.8 0.046

 ��� E′, cm/s 8.5±0.8 10.0±0.9 1.5±0.6 0.047

 ��� E/E′ 8.5±0.6 6.6±0.5 −1.95±0.7 0.014

DBP indicates diastolic blood pressure; E′, tissue Doppler mitral annulus 
movement; E/E′, ratio of mitral valve Doppler early flow (E wave velocity) to 
tissue Doppler mitral annulus movement (E′ wave velocity); EDV, end-diastolic 
volume; EF, ejection fraction; EF1, first-phase ejection fraction; LV, left ventricle; 
MAP, mean arterial pressure; NTG, nitroglycerin; SBP, systolic blood pressure; 
SV, stroke volume; T1, time to first systolic peak on pressure waveform; and 
TOR, time to onset of myocardial relaxation.

Figure 3.  Typical myocardial wall stress traces in a subject with 
preserved systolic function and first-phase ejection fraction (EF1; 
solid line, E/E′=8.0, EF1=19.7%) and a subject with impaired 
diastolic function and reduced EF1 (dashed line, E/E′=16.6, 
EF1=14.8%) demonstrating longer time to onset of relaxation 
(TOR, dotted arrows) in the patient with diastolic dysfunction 
(TOR, 61.2% vs 22.0% of ejection duration). Both subjects had 
preserved ejection fraction (EF; 63.4% and 63.5%) and similar 
resting heart rate. E/E′ indicates ratio of mitral valve Doppler early 
flow (E wave velocity) to tissue Doppler mitral annulus movement 
(E′ wave velocity; and MWS, myocardial wall stress.
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a velocity-dependent reduction of myosin crossbridge attach-
ment may all play a part in shortening deactivation, whereby 
shortening and early ejection from the LV leads to a rapid 
reduction in myocardial wall stress. Our findings that, in 
hypertensive patients, impaired shortening as measured by 
EF1 is a predictor of diastolic dysfunction and can be modified 
by nitroglycerin provide a potential mechanistic link between 
early systolic dysfunction, sustained myocardial contraction, 
and impaired diastolic relaxation.

In conclusion, in hypertensive patients, a reduced early 
systolic EF correlates with sustained myocardial stress in later 
systole and with diastolic dysfunction. EF1, which we sug-
gest is linked to subsequent contraction/relaxation through the 
shortening deactivation phenomenon, may be an important 
diagnostic measurement and therapeutic target to prevent pro-
gression to heart failure, particularly that which is associated 
with hypertension and preserved EF.
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What Is New?
•	Shortening deactivation provides a unifying concept linking systolic to di-

astolic dysfunction. To quantify early systolic shortening, we introduced 
first-phase ejection fraction (EF1), the ejection fraction up to the time 
of maximal ventricular fiber shortening. In regression analysis in hyper-
tensive patients with varying degrees of diastolic function, incorporating 
measures of afterload and echocardiographic measures of ventricular 
structure and function, EF1 was found to be the best predictor of diastolic 
function and relaxation as measured by the ratio of transmitral Doppler 
early filling velocity to tissue Doppler early diastolic mitral annular veloc-
ity (E/E′) and E′. EF1 could be modulated independent of afterload by 
nitroglycerin with subsequent improvement in diastolic function.

What Is Relevant?
•	 In hypertensive patients with preclinical diastolic dysfunction and pre-

served overall ejection fraction, EF1 is impaired and associated with 

sustained myocardial contraction and diastolic dysfunction. Therapeutic 
interventions that improve first-phase ejection might improve diastolic 
function.

Summary

In hypertensive patients, reduced early systolic ejection fraction 
is associated with sustained contraction and diastolic dysfunc-
tion. EF1, which we suggest is linked to subsequent contraction/
relaxation through the shortening deactivation phenomenon, may 
be an important diagnostic measurement and therapeutic target to 
prevent progression to heart failure particularly that is associated 
with hypertension and preserved ejection fraction.

Novelty and Significance
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Central blood pressure, aortic root pulse wave velocity, reflection coefficient and 

aortic input impedance 

 

Carotid and radial arterial pressure waveforms were obtained by a high-fidelity 

micromanometer (SPC-301; Millar Instruments, Houston, TX) from the left radial and 

left carotid artery and processed by the SphygmoCor device by an experienced operator 

(Atcor medical, Australia). Radial and carotid waveforms meeting the inbuilt quality 

control criteria of the SphygmoCor device (operator index > 75%) were averaged and 

calibrated from peripheral brachial measures of systolic (SBP) and diastolic blood 

pressure (DBP), from which mean arterial pressure (MAP) was calculated by 

integrating the radial waveform. The carotid pressure waveform was then calibrated 

from MAP and peripheral DBP which (unlike SBP) are equal at aortic and peripheral 

sites 1. Ensemble averaged carotid pressure was used as surrogate for ascending aortic 

pressure 2. Previous studies have shown that, because of its close proximity to the aorta, 

the carotid waveform can be used as a surrogate of the central aortic pressure waveform 

and left ventricular pressure during systole 2. The carotid waveform was used to identify 

the time to first systolic shoulder of the central pressure waveform (T1), which closely 

approximates the time of maximal aortic flow and ventricular shortening 3.  

 

An aortic flow waveform was obtained from maximal aortic flow velocity (obtained in 

the left ventricular outflow tract (LVOT) using pulsed wave Doppler from 5-chamber 

view) multiplied by the LVOT cross-sectional area (Internal diameter of the LVOT was 

measured in the parasternal long-axis view at the valve annulus, and LVOT area was 

calculated assuming circularity).4 Pressure and flow were decomposed into a series of 

sinusoidal harmonics, each represented by its amplitude (modulus) and phase angle. 

Input impedance was calculated as the ratio of the pressure and flow harmonics over 

the frequency range 0 – 10 Hz. Characteristic impedance (Zc) was calculated as the 

mean of the modulus of input impedance over the frequency range 3 to 10 Hz.4 Aortic 

root pulse wave velocity (arPWV), was calculated from the relationship between 

pressure and flow velocity during initial ejection (before T1) by the single-point 

technique5 (the sum of squares method), using the following equation:  

 

𝑎𝑟𝑃𝑊𝑉 =
1

𝜌
√
∑𝑑𝑃2

∑𝑑𝑈2
 

where ρ is the density of blood, P is central aortic pressure (derived from carotid 

pressure by SphygmoCor) and U is aortic flow velocity (derived from 

echocardiography pulsed-wave Doppler in the aortic root from an apical 5-chamber 

view). arPWV is related to characteristic impedance (Zc, measured in dyne.s.cm-5) and 

aortic root cross-sectional area (A) by: arPWV=Zc.A/ ρ.6 

 

Forward and backward pressure waveform wave decomposition was performed based 

on the conservation of mass and momentum and using Parker’s time domain approach7 

to obtain forward (Pf) and backward (Pb) pressure wave components  of pressure (P) so 

that: Pf + Pb = P – Pd where P is total pressure and Pd is the diastolic pressure. Pf and Pb 

are given by:  

𝑃𝑓 =
1

2
∑[ (𝑑𝑃 + 𝜌𝑐𝑑𝑈)] 

𝑃𝑏 =
1

2
∑[ (𝑑𝑃 − 𝜌𝑐𝑑𝑈)] 



Where U is flow velocity, ρ is blood density, and c is pulse wave velocity which was 

calculated using the method of the sum of squares. The reflection coefficient (R=Pb/Pf) 

was calculated as the ratio of the amplitude (peak) of the backward wave to that of the 

forward wave.  

 

Time-varying myocardial wall stress 

Ejection-phase time-varying myocardial wall stress was computed according to Arts:8 

MWS=P/[1/3ln(1+Vw/Vc)] 

Where P=LV pressure, ln=natural log, Vw=myocardial wall volume, and Vc=LV 

cavity volume. Myocardial wall volume was calculated by deduction of LV cavity 

volume from LV epicardial volume at each time point. Cavity and epicardial volume 

tracking were gated by R-R interval on ECG. Isovolumetric contraction period was 

measured from on set of R wave to AVO, and end of systole was defined as R wave to 

AVC. 

 

Reproducibility assessment for LV volumes and EF1  

The reproducibility of this wall tracking for EDV and ESV were evaluated from 

measurements on 12 subjects, repeated on two separate occasions separated by 

approximately 3 months by the same observer and by two independent observers on the 

same occasion. The between-visit coefficient of variation (CV, equal to the SD as a 

percentage of the mean) was 2.0%, 3.1% and 4.3% for EDV, ESV and EF1 respectively. 

Inter-observer CVs were 3.0% for ED and ES cavity volumes respectively.  
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Figure S1. a) Average modulus and b) phase of aortic input impedance in three 
groups divided by E/e’. E/e’<6.44 (solid line), E/e’: 6.44-9.18 (dashed line) and 
E/e’ >9.18 (dotted line). Neither modulus nor phase are significantly different 
between groups. 
 

 
 
  



 
Figure S2. Time from end-diastole to onset of myocardial relaxation (TOR) in 
three groups defined according to E/e’. Myocardial contraction was sustained 
to a greater extent in subjects with impaired diastolic function compared to 
those with preserved diastolic function with TOR higher in subjects with 
impaired diastolic function. 
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Figure S3. Typical central pressure (solid line) and ejection duration myocardial 
wall stress traces (dashed line) in (a), a subject with preserved systolic function 
and first-phase ejection fraction and (b), a subject with impaired diastolic 
function and reduced EF1. 
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Figure S4. Myocardial wall stress at baseline (solid line) and after 
administration of nitroglycerin (NTG, dashed line) in a 65 year-old man. After 
NTG, first-phase ejection fraction (EF1) increased from 11.6% to 17.9%, and 
time to onset of relaxation (TOR) reduced from 53 to 32% of ejection duration. 
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