Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease

An Individual Participant Data Meta-Analysis

Toshiaki Ohkuma, Toshiharu Ninomiya, Hirofumi Tomiyama, Kazuomi Kario, Satoshi Hoshide, Yoshikuni Kita, Toyoshi Inoguchi, Yasutaka Maeda, Katsuhiko Kohara, Yasuharu Tabara, Motoyuki Nakamura, Takayoshi Ohkubo, Hirotaka Watada, Masanori Munakata, Mitsuru Ohishi, Norihisa Ito, Michinari Nakamura, Tetsuo Shoji, Charalampos Vlachopoulos, Akira Yamashina; on behalf of the Collaborative Group for J-BAVEL (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies)*

Abstract—An individual participant data meta-analysis was conducted in the data of 14673 Japanese participants without a history of cardiovascular disease (CVD) to examine the association of the brachial-ankle pulse wave velocity (baPWV) with the risk of development of CVD. During the average 6.4-year follow-up period, 687 participants died and 735 developed cardiovascular events. A higher baPWV was significantly associated with a higher risk of CVD, even after adjustments for conventional risk factors (P for trend <0.001). When the baPWV values were classified into quintiles, the multivariable-adjusted hazard ratio for CVD increased significantly as the baPWV quintile increased. The hazard ratio in the subjects with baPWV values in quintile 5 versus that in those with the values in quintile 1 was 3.50 (2.14–5.74; P<0.001). Every 1 SD increase of the baPWV was associated with a 1.19-fold (1.10–1.29; P<0.001) increase in the risk of CVD. Moreover, addition of baPWV to a model incorporating the Framingham risk score significantly increased the C statistics from 0.8026 to 0.8131 (P<0.001) and also improved the category-free net reclassification (0.247; P<0.001). The present meta-analysis clearly established baPWV as an independent predictor of the risk of development of CVD in Japanese subjects without preexisting CVD. Thus, measurement of the baPWV could enhance the efficacy of prediction of the risk of development of CVD over that of the Framingham risk score, which is based on the traditional cardiovascular risk factors. (Hypertension. 2017;69:1045-1052. DOI: 10.1161/HYPERTENSIONAHA.117.09097.)

Key Words: arterial stiffness ➤ brachial-ankle pulse wave velocity ➤ cardiovascular disease ➤ individual participant data meta-analysis ➤ risk factors

Arterial stiffness is well-recognized as an important predictor of development of cardiovascular disease (CVD),1,2 and meta-analyses of prospective cohort studies have revealed that increase in the carotid-femoral pulse wave velocity (cPWV) is associated with an increase in the risk of development of CVD.3,4 However, the cPWV is measured by tonometry or Doppler, which requires specialized training and exposure of the inguinal region.5,6

Received January 17, 2017; first decision February 3, 2017; revision accepted March 24, 2017.

From the Department of Medicine and Clinical Science, Graduate School of Medical Sciences (T. Ohkuma), Department of Epidemiology and Public Health, Graduate School of Medical Sciences (T.N.), Innovation Center for Medical Redox Navigation (T.I.), and Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences (Y.M.), Kyushu University, Fukuoka, Japan; Department of Cardiology, Tokyo Medical University, Japan (H.T., A.Y.); Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan (K. Kario, S.H.); Faculty of Nursing Science, Tsuruga Nursing University, Japan (Y.K.); Department of Regional Resource Management, Faculty of Collaborative Regional Innovation, Ehime University, Japan (K. Kohara); Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Japan (Y.T.); Department of Internal Medicine, Iwate Medical University, Japan (Motoyuki Nakamura); Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan (T. Ohkuba); Departments of Metabolism and Endocrinology, Juntendo University, Graduate School of Medicine, Tokyo, Japan (H.W.); Research Center for Lifestyle-Related Disease, Tohoku Rosai Hospital, Sendai, Japan (M.M.); Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan (M.O.); Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Japan (N.I.); Department of Cardiovascular Medicine, Cardiovascular Institute, Japan (Michinari Nakamura); Department of Vascular Medicine, Osaka City University Graduate School of Medicine, Japan (T.N.); and Hypertension and Cardiometabolic Unit, (1st) Department of Cardiology, Athens Medical School, Hippokration Hospital, Greece (C.V.).

* A list of all J-BAVEL Collaborators is given in the Appendix and Appendix S2 in the online-only Data Supplement.

The online-only Data Supplement is available with this article at http://hyper.ahajournals.org/lookup/suppl/doi:10.1161/HYPERTENSIONAHA.117.09097/-/DC1.

Correspondence to Hirofumi Tomiyama, Department of Cardiology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Tokyo, Japan. E-mail tomiyama@tokyo-med.ac.jp

© 2017 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.117.09097

1045
In the early 2000s, a simple device for measurement of the brachial-ankle pulse wave velocity (baPWV) was launched for clinical use.\textsuperscript{7} baPWV is automatically measured using a separate cuff for each of the 4 limbs by an oscillometric method. baPWV may be more easily applied in clinical practice than the cfPWV because of the simplicity and ease of its measurement.\textsuperscript{7,8} baPWV has been reported to be closely correlated with the cfPWV because of the simplicity and ease of its measurement.\textsuperscript{7,8} A recent meta-analysis using summary data from the literature has demonstrated that higher levels of baPWV were associated with an increased risk of development of CVD.\textsuperscript{9,10} However, most of the studies included in the meta-analyses were conducted in patients with a high CVD risk (patients with CVD or end-stage renal disease), and thus, the usefulness of baPWV to assess the risk of development of CVD in subjects with a low to intermediate CVD risk as assessed using the Framingham risk score (FRS) had not been clearly elucidated. Furthermore, these studies did not determine the predictive ability for CVD over that of the traditional risk factors. Therefore, we conducted a meta-analysis using individual participant data (IPD) from prospective cohort studies to clarify whether baPWV could be used as an independent marker to predict the risk of development of CVD in subjects without preexisting CVD.

Methods

Study Population

J-BA VEL (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data-Meta-Analysis of Prospective Studies) is an IPD meta-analysis of cohort studies that investigated the association between the baPWV and all-cause mortality and CVD risk, conducted by the baPWV IPD meta-analysis study group. This collaborative study included the data from 14 cohort studies conducted in Japan (9 published and 5 unpublished studies).\textsuperscript{11–24} The study was conducted with the approval of the Ethical Guidelines Committee of Tokyo Medical University (No 2655 2014).

Figure 1 depicts the process used to select the study population. We excluded 5506 subjects from the analyses (the details of the exclusions and inaccurate baPWV measurement\textsuperscript{25} are described in Appendix S1 in the online-only Data Supplement). A final total of 13,381 subjects from 7 cohorts were included in the analysis for all-cause mortality (5 published studies\textsuperscript{12,15,17,18,24} and 2 unpublished studies\textsuperscript{14,16}), and 14,673 participants from 8 studies (5 published studies\textsuperscript{12,15,17,18,24} and 3 unpublished studies\textsuperscript{14,16,19}) were included in the analysis for CVD risk.

Figure 1. Flow chart of the participant selection procedure. ABI indicates ankle brachial pressure index; baPWV, brachial-ankle pulse wave velocity; and CVD, cardiovascular disease.

Measurement of baPWV and Ankle Brachial Pressure Index, Risk Factors, End Points, and Statistical Analysis

Detailed information on the measurement of the baPWV and ankle brachial pressure index, risk factors, end points, and statistical analysis are provided in Appendix S1. To estimate the CVD risk of individual participants, the FRS\textsuperscript{26} was calculated, and the study subjects were categorized into low (10 year risk, <10%), intermediate (10 year risk, 10%–20%), and high risk (10 year risk, ≥20%) groups.\textsuperscript{26,27}

Summary of Statistical Analysis

The meta-analysis was conducted according to the Meta-Analysis of Observational Studies in Epidemiology guidelines (Appendix S1).\textsuperscript{28} The consistency in the area under the receiver operating characteristic curves (ie, C statistics) among models was estimated using DeLong’s method.\textsuperscript{29} Discriminatory ability was evaluated by calculating the category-free net reclassification improvement and integrated discrimination improvement.\textsuperscript{30,31} A 2-sided P value of <0.05 was considered to indicate statistical significance in all the analyses. The analyses were performed using the SAS software package, version 9.3 (SAS Institute Inc, Cary, NC), and the Stata software (release 13; StataCorp, College Station, TX).

Results

Characteristics of the Included Studies

The clinical characteristics of the 8 studies included in the analysis are listed in Table 1. During the follow-up period, a total of 687 participants died, and a total of 735 participants developed CVD. The numbers of CVD events in each cohort are shown in Table S1.

Association of baPWV With the All-Cause Mortality

Information on the baPWV and all-cause mortality was available in 7 studies. Table 2 shows the pooled estimate of the adjusted hazard ratio (HR) for all-cause mortality according to the baPWV values. The age- and sex-adjusted HR increased linearly with increase of the baPWV (P for trend =0.006). The HR for all-cause mortality in participants with baPWV levels in quintile 5 was 1.32 (95% confidence interval [CI], 0.94–1.87) in comparison with that in those with the values in quintile 1. The age- and sex-adjusted risk of all-cause mortality increased by 17% (95% CI, 9%–26%) per every 1 SD increase of the baPWV. There was no evidence of heterogeneity in the effects across studies (P for heterogeneity =0.92; I\textsuperscript{2}=0.0%; Figure S1A). However, this linear association was weakened after adjustments for potential confounding factors (P for trend =0.23), although the association was significant in the analysis conducted using baPWV as a continuous variable.

Association of baPWV With the Risk of CVD

The association between baPWV and the risk of CVD was examined in 8 studies. The age- and sex-adjusted pooled HR for the development of CVD increased linearly with increase of the baPWV quintile (Table 2; P for trend <0.001). Every 1 SD increase of the baPWV was associated with a 1.21-fold (95% CI, 1.13–1.30) increase in the risk of CVD. These associations remained substantially unchanged even after adjustments for potential confounding factors. There was evidence of marginally significant heterogeneity in the effects of the associations across studies (I\textsuperscript{2}=49.1%; P for heterogeneity
Youden Index was 15.43 m/s (Figure S3B). With regard to the subtypes of diabetes mellitus, the HR for CVD occurrence was also examined. The point on the receiver operating characteristic curve that was closest to the origin of the unit circle was chosen (Figure S3A). The value that minimized the net reclassification improvement and integrated discrimination improvement was 15.91 m/s (Figure S3A), and the value that minimized the Youden Index was 15.43 m/s (Figure S3B).

Table 1. Baseline Characteristics of the Included Cohorts

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Population</th>
<th>No of Subjects</th>
<th>Age, y</th>
<th>Men, %</th>
<th>Follow-Up Periods, y</th>
<th>Mean baPWV, m/s</th>
<th>Mean Brachial SBP, mmHg</th>
<th>Mean Brachial DBP, mmHg</th>
<th>Use of Antithrombolytic Agents, %</th>
<th>Mean HbA1c, %</th>
<th>Mean BMI, kg/m²</th>
<th>Mean TCHOL, mmol/L</th>
<th>Mean HDLC, mmol/L</th>
<th>Current Smoking Habits, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehime Study*</td>
<td>Community</td>
<td>1315</td>
<td>65 (9)</td>
<td>39</td>
<td>4.3</td>
<td>15.80 (3.23)</td>
<td>126 (30)</td>
<td>73 (10)</td>
<td>29</td>
<td>5.9 (0.6)</td>
<td>23.2 (3.1)</td>
<td>5.66 (0.95)</td>
<td>1.75 (0.47)</td>
<td>6</td>
</tr>
<tr>
<td>Hisayama Study*</td>
<td>Community</td>
<td>2884</td>
<td>60 (12)</td>
<td>43</td>
<td>7.0</td>
<td>16.61 (4.45)</td>
<td>134 (20)</td>
<td>78 (11)</td>
<td>21</td>
<td>5.4 (0.8)</td>
<td>23.2 (3.3)</td>
<td>5.29 (0.90)</td>
<td>1.63 (0.42)</td>
<td>23</td>
</tr>
<tr>
<td>Iwate Study*</td>
<td>Community</td>
<td>955</td>
<td>59 (11)</td>
<td>47</td>
<td>7.9</td>
<td>14.77 (2.88)</td>
<td>128 (17)</td>
<td>77 (11)</td>
<td>25</td>
<td>5.5 (0.8)</td>
<td>24.1 (3.2)</td>
<td>5.01 (0.87)</td>
<td>1.42 (0.38)</td>
<td>23</td>
</tr>
<tr>
<td>Ohsama Study*</td>
<td>Community</td>
<td>783</td>
<td>66 (7)</td>
<td>32</td>
<td>5.5</td>
<td>16.73 (3.70)</td>
<td>140 (18)</td>
<td>82 (10)</td>
<td>38</td>
<td>5.7 (0.7)</td>
<td>23.9 (3.1)</td>
<td>5.42 (0.87)</td>
<td>1.54 (0.38)</td>
<td>11</td>
</tr>
<tr>
<td>Takashima Study*</td>
<td>Community</td>
<td>4575</td>
<td>59 (13)</td>
<td>37</td>
<td>8.8</td>
<td>15.21 (3.56)</td>
<td>134 (20)</td>
<td>79 (12)</td>
<td>18</td>
<td>5.4 (0.7)</td>
<td>23.0 (3.1)</td>
<td>5.37 (0.92)</td>
<td>1.60 (0.41)</td>
<td>16</td>
</tr>
<tr>
<td>J-HOP Study†</td>
<td>Patients with CVD risk†</td>
<td>852</td>
<td>61 (11)</td>
<td>47</td>
<td>5.8</td>
<td>16.00 (2.95)</td>
<td>135 (16)</td>
<td>80 (11)</td>
<td>76</td>
<td>5.9 (0.9)</td>
<td>24.6 (3.4)</td>
<td>5.20 (0.53)</td>
<td>1.48 (0.37)</td>
<td>12</td>
</tr>
<tr>
<td>NOAH Study‡</td>
<td>HT patients‡</td>
<td>446</td>
<td>59 (12)</td>
<td>56</td>
<td>5.5</td>
<td>16.58 (3.29)</td>
<td>136 (19)</td>
<td>82 (12)</td>
<td>37</td>
<td>5.9 (1.2)</td>
<td>24.3 (3.4)</td>
<td>5.49 (0.96)</td>
<td>1.48 (0.44)</td>
<td>24</td>
</tr>
<tr>
<td>Kyushu Prevention Study of Atherosclerosis§</td>
<td>DM patients§</td>
<td>2890</td>
<td>59 (12)</td>
<td>60</td>
<td>3.1</td>
<td>17.09 (4.14)</td>
<td>135 (20)</td>
<td>81 (11)</td>
<td>32</td>
<td>8.2 (2.2)</td>
<td>24.7 (4.1)</td>
<td>5.30 (1.04)</td>
<td>1.36 (0.44)</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14700</td>
<td>60 (12)</td>
<td>44</td>
<td>6.4</td>
<td>16.05 (3.86)</td>
<td>134 (21)</td>
<td>79 (11)</td>
<td>28</td>
<td>6.0 (1.6)</td>
<td>24.7 (4.1)</td>
<td>5.34 (0.94)</td>
<td>1.55 (0.43)</td>
<td>19</td>
</tr>
</tbody>
</table>

Numbers in parentheses represent the standard deviations. baPWV indicates brachial-ankle pulse wave velocity; BMI, body mass index; CVD, cardiovascular disease; DBP, diastolic blood pressure; DM, diabetes mellitus; HbA1c, hemoglobin A1c; HDLC, serum high-density lipoprotein cholesterol; HT, hypertension; J-HOP, Japan Morning Surge Home Blood Pressure; N, number; NOAH, Noninvasive Atherosclerotic Evaluation of Hypertension; SBP, systolic blood pressure; and TCHOL, serum total cholesterol.

*The mean follow-up period was derived from the analysis for cardiovascular disease.
†The J-HOP study included patients with any of the following cardiovascular risk factors: hypertension, impaired glucose tolerance or diabetes mellitus, dyslipidemia, smoking habit, chronic renal disease, atrial fibrillation, metabolic syndrome, and sleep apnea syndrome.
‡The NOAH study included outpatients diagnosed as having essential hypertension.
§The Kyushu Prevention Study of Atherosclerosis included outpatients diagnosed as having diabetes mellitus.

The risk of CVD increased linearly with increase of the baPWV, irrespective of the presence or absence of hypertension (Figure S3A). With regard to diabetes mellitus, the HR for CVD increased steeply with increasing baPWV levels in

Subgroup Analysis
As shown in Figure 2, every 1 SD increase of the baPWV was associated with a 1.39-fold (95% CI, 1.16–1.67) increase in the risk of CVD in the subgroup without hypertension, whereas the association was weaker in the subgroup with hypertension (HR, 1.17; 95% CI, 1.07–1.28; P for interaction =0.04). Similarly, there was a significant interaction between the baPWV and diabetes mellitus; the magnitude of the association between the baPWV and the incidence of CVD tended to be greater in the subgroup without diabetes mellitus (HR, 1.25; 95% CI, 1.11–1.42) as compared with that in the subgroup with diabetes mellitus (HR, 1.10; 95% CI, 0.97–1.24; P for interaction <0.001). With regard to the CVD risk status defined by the FRS, the association was stronger in the subjects classified as being at low risk as compared with that in the subjects classified as being at intermediate-high risk (P for interaction <0.001), although the HR for CVD increased significantly with increase of the baPWV in both subgroups. Similar results were obtained when the subjects were categorized into 3 rather than 2 risk groups (low, intermediate, and high risk). In addition, we evaluated the mutual interaction between the baPWV and traditional risk factors (hypertension and diabetes mellitus) in the development of CVD (Figure 3). The risk of CVD increased linearly with increase of the baPWV, irrespective of the presence or absence of hypertension (Figure 3A). With regard to diabetes mellitus, the HR for CVD increased steeply with increasing baPWV levels in
the subjects without diabetes mellitus (P for trend <0.001), whereas only a trend toward moderate increase was observed in those with diabetes mellitus (P for trend =0.02), indicating a significant interaction (Figure 3B; P for interaction =0.001).

The HR for CVD of the fourth quintile range of baPWV in subjects without diabetes mellitus was higher than the HR of the lowest quintile range of baPWV in those with diabetes mellitus.

Next, we assessed whether the ability of baPWV to predict the risk of future CVD development differed by the CVD risk assessed based on the FRS (Table 3). In participants with a low FRS, the area under the receiver operating characteristic curve increased significantly with the addition of baPWV to the model incorporating the FRS. Inclusion of baPWV to the model incorporating the FRS significantly improved the category-free net reclassification improvement and integrated discrimination improvement in low and intermediate-high risk subgroups. The magnitude of the improvements in the metrics tended to be greater in the low-risk FRS group as compared with that in the subjects with intermediate-high risk FRS groups (Table 3). The overall tendencies were broadly similar when the intermediate-high risk FRS group was further divided into intermediate-risk FRS and high-risk FRS groups.

### Discussion

This IPD meta-analysis of the data from prospective cohort studies showed that baPWV provided additional predictive information for CVD occurrence, over that obtained from the conventional CVD risk score (ie, the net reclassification improvement increased significantly after inclusion of baPWV to the model based on FRS).

A literature-based meta-analysis has shown that every 1 m/s increase of the baPWV was associated with a 12% increase in the risk of CVD occurrence, which corresponds to a 3.1-fold increase of the CVD risk per every 10 m/s increase of the baPWV. However, more than half of the study participants in this literature-based meta-analysis were patients with CVD or end-stage kidney disease, with a poor prognosis (ie, very high–risk subjects). The usefulness of baPWV for precise prediction of CVD development in the relatively low- to medium-risk population was yet to be elucidated. In the present study, the IPD meta-analysis revealed that elevated baPWV was associated with an elevated risk of occurrence of CVD, independent of the conventional cardiovascular risk factors, in a population with a relatively low to intermediate risk of development of CVD (general population and hypertensive/diabetic patients). Thus, the findings of our study suggest that measurement of the baPWV may be a tool for CVD prevention.
increased risk of development of CVD. However, subjects with hypertension or diabetes mellitus are also more likely to have endothelial dysfunction and vascular inflammation in addition to increased arterial stiffness, possibly leading to plaque formation and rupture and development of CVD.33

For the subjects with intermediate CVD risk, the strategy for cardiovascular risk stratification has not yet been fully established.27 Because the number of subjects with intermediate CVD risk is large, a biomarker that is simple and easy to measure is needed.27,34 It might be difficult to incorporate measurement of the cfPWV, a reference standard for PWV, in routine clinical settingsbecause of the technical difficulties involved in its measurement. On the other hand, several questions and concerns regarding measurement of baPWV have also been raised.35 The present study clearly demonstrated the applicability of baPWV as a predictor of future cardiovascular events, even when the subjects included in the analysis were limited to those with intermediate CVD risk. Thus, we propose that baPWV is applicable for CVD risk prediction that can be applied more broadly in general clinical settings.

In this study, the magnitude of the effect of increase of the baPWV on the risk of development of CVD was greater in the participants without diabetes mellitus or hypertension than in those with either or both of these diseases. Furthermore, the predictive ability of baPWV for future development of CVD was better than that of FRS in the population with a low risk of development of CVD. While the ability of the baPWV to reclassify was small, these findings may propose the applicability of baPWV measurement for prediction of CVD development, especially in subjects with a low CVD risk. The baPWV measurement is simple because it just involves measurement of the blood pressure in all 4 extremities with an oscillometric cuff device. Therefore, measurement of the baPWV may provide additional predictive information for future development of CVD in subjects with a low CVD risk registered in health screening programs for CVD.

The exact reason why the effect of the baPWV on the risk of CVD differed according to the FRS or the presence/absence of hypertension or diabetes mellitus is unclear, but there are several plausible mechanisms: increased arterial stiffness attenuates the cushioning effect of the large arteries, leading to increased cardiac afterload, decreased coronary blood flow, increased transmission of pulsatile energy to the peripheral microcirculation, and microvascular damage, resulting in an increased risk of development of CVD. However, subjects...

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Model</th>
<th>C Statistic</th>
<th>Category-Free NRI</th>
<th>IDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>All participants</td>
<td>FRS</td>
<td>0.8026 (0.7844–0.8207)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRS+baPWV</td>
<td>0.8131 (0.7958–0.8304)</td>
<td>0.247 (0.160–0.335)</td>
<td>0.0068 (0.0035–0.0100)</td>
</tr>
<tr>
<td>FRS low (men ≤5, women ≤9)</td>
<td>FRS</td>
<td>0.7967 (0.7575–0.8359)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRS+baPWV</td>
<td>0.8214 (0.7842–0.8585)</td>
<td>0.334 (0.162–0.506)</td>
<td>0.0096 (0.0038–0.0154)</td>
</tr>
<tr>
<td>FRS intermediate-high (men ≥6, women ≥10)</td>
<td>FRS</td>
<td>0.7370 (0.7016–0.7724)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRS+baPWV</td>
<td>0.7465 (0.7127–0.7803)</td>
<td>0.232 (0.129–0.334)</td>
<td>0.0059 (0.0027–0.0091)</td>
</tr>
<tr>
<td>FRS low (men ≤5, women ≤9)</td>
<td>FRS</td>
<td>0.7967 (0.7575–0.8359)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRS+baPWV</td>
<td>0.8214 (0.7842–0.8585)</td>
<td>0.334 (0.162–0.506)</td>
<td>0.0096 (0.0038–0.0154)</td>
</tr>
<tr>
<td>FRS intermediate (men 6–6, women 10–14)</td>
<td>FRS</td>
<td>0.7421 (0.7206–0.7636)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRS+baPWV</td>
<td>0.7510 (0.7182–0.7837)</td>
<td>0.194 (0.046–0.342)</td>
<td>0.0040 (0.0008–0.0071)</td>
</tr>
<tr>
<td>FRS high (men ≥9, women ≥15)</td>
<td>FRS</td>
<td>0.7003 (0.6853–0.7154)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRS+baPWV</td>
<td>0.7104 (0.6879–0.7329)</td>
<td>0.245 (0.101–0.388)</td>
<td>0.0065 (0.0015–0.0114)</td>
</tr>
</tbody>
</table>

Model FRS included the Framingham risk score and type of cohort (Ehime, Hisayama, Iwate, Ohasama, Takashima, J-HOP, NOAH, and Kyushu Prevention Study of Atherosclerosis). baPWV indicates brachial-ankle pulse wave velocity; CI, confidence interval; FRS, Framingham risk score; IDI, integrated discrimination improvement; J-HOP, Japan Morning Surge Home Blood Pressure; NOAH, Noninvasive Atherosclerotic Evaluation of Hypertension; and NRI, net reclassification improvement.

The strengths of the present study were the inclusion of a large number of participants, the use of IPD, which allowed for sufficient statistical power to detect differences, the adjustments for confounders, and the subgroup analyses. In addition, the present study also evaluated the enhanced predictive ability of baPWV over that of the conventional risk factors for predicting the future risk of development of CVD.
Several limitations should also be noted. First, all the studies included in this meta-analysis were conducted in a Japanese population with low to intermediate CVD risk. Therefore, it would be difficult to generalize the current findings to other races/ethnicities or populations with a high CVD risk. Second, the definition of cardiovascular outcomes was not prespecified, which may be one of the sources of the heterogeneity in the findings across studies. However, there is no evidence of significant heterogeneity of the results among studies that used different definitions for CVD outcomes (eg, the Ohasama study and other studies), and also, our findings were not substantially altered by exclusion of the Ohasama study cohort from our analyses. Third, differences in mean baPWV levels were observed even in the community-based cohorts. For example, the difference was 1.84 m/s between the Hisayama and Iwate study cohorts, despite the absence of any differences in the demographic characteristics between the 2 cohorts. However, the difference decreased to 1.15 m/s after adjustment for SBP, one of the determinants of the baPWV. Thus, the difference in SBP between the 2 cohorts (Hisayama =134 mm Hg versus Iwate =128 mm Hg) could possibly explain the difference in the baPWV. Fourth, the multivariable-adjusted analysis in the present study failed to reveal a significant association between the baPWV and the all-cause mortality. This was probably because of the effect of death from causes other than CVD, such as deaths because of cancer or infection, which are less likely to be associated with arterial stiffness. Fifth, the Takashima Study reported an unusually high rate of fatal events. Therefore, we conducted a sensitivity analysis to examine the predictive ability of the baPWV for future development of CVD in the subjects after excluding the Takashima study cohort, and the predictive ability remained unchanged (data not shown).

**Perspectives**

The findings of the present meta-analysis clearly showed that elevated values of the baPWV were associated with an elevated risk of CVD in Japanese subjects. The baPWV provided additional predictive information for future CVD over that obtained from the traditional risk factors in patients without preexisting CVD. These findings suggest that the baPWV could serve as a marker of the future risk of development of CVD in clinical practice, in both patients with low and intermediate-high CVD risk.

**Appendix**

Masahide Nagano: Cardiovascular Center, Kumamoto Saiseikai Hospital, Kumamoto, Japan. Ogata Yukiiyo: Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan. Tomoyuki Kabutoya: Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan. Kei Asayama: Teikyo University School of Medicine, Tokyo, Japan. Naoyuki Takashima: Department of Health Science, Shiga University of Medical Science, Otsu, Japan. Tanvir Turin Chowdhury: Department of Family Medicine, Department of Community Health Sciences, University

---

**Figure 2.** Comparisons of hazard ratios for the development of cardiovascular disease per every 1 SD increase of the baPWV levels in subgroups of age, hypertension, diabetes mellitus, and Framingham risk score. baPWV indicates brachial-ankle pulse wave velocity; BMI, body mass index; CI, confidence interval; M, men; SBP, systolic blood pressure; and W, women. *Multivariate adjustment was made for sex, brachial SBP, history of use of antihypertensive agents, diabetes mellitus, BMI, serum total cholesterol, serum high-density lipoprotein cholesterol, and current smoking habit. **Multivariate adjustment was made for age, sex, diabetes mellitus, BMI, serum total cholesterol, serum high-density lipoprotein cholesterol, and current smoking habit. ***Multivariate adjustment was made for age, sex, brachial SBP, use of history of use of antihypertensive agents, BMI, serum total cholesterol, serum high-density lipoprotein cholesterol, and current smoking habit. **The risk estimates were made without adjustments.

---

**Figure 3.** Multivariable-adjusted hazard ratios for the development of cardiovascular disease according to baPWV level by the presence or absence of hypertension or diabetes mellitus. A, Multivariate adjustment was made for age, sex, diabetes mellitus, body mass index, serum total cholesterol, serum high-density lipoprotein cholesterol, and current smoking habit. B, Multivariate adjustment was made for age, sex, brachial systolic blood pressure, history of use of antihypertensive agents, body mass index, serum total cholesterol, serum high-density lipoprotein cholesterol, and current smoking habit. baPWV indicates brachial-ankle pulse wave velocity; and Q, quintile range.
of Calgary, Calgary, Canada. Kayo Mitsuki-Shinohara: Osaka City University, Osaka, Japan. Takeshi Yamashita: Cardiovascular Institute Japan, Tokyo, Japan.

Acknowledgments
We gratefully acknowledge the efforts of the investigators, research coordinators, and committee members of each prospective study. The organization of the study group, the lists of members of the study team, and their contribution statement are provided in Appendix S2 in the online-only Data Supplement.

Sources of Funding
This study was supported by Omron Healthcare Company (Kyoto, Japan), which awarded a grant to the baPWV IPD meta-analysis organization of the study group, the lists of members of the study.

Disclosures
H. Tomiyama and A. Yamashina received research grants from Omron Healthcare Company (Kyoto, Japan). The other authors report no conflicts.

References
Novelty and Significance

What Is New?
- This individual participant data meta-analysis showed that inclusion of brachial-ankle pulse wave velocity (baPWV) in the risk assessment significantly improved the accuracy of prediction of the risk of cardiovascular disease (CVD) events over that assessed using the conventional CVD risk score (Framingham risk score) alone in subjects without preexisting CVD.

What Is Relevant?
- An elevated baPWV is well known to be associated with an elevated risk of development of CVD in the future. However, the usefulness of baPWV as a predictor of CVD risk had not been clarified in subjects with a low to intermediate CVD risk.

Summary
baPWV was identified as an independent predictor of future CVD events, independent of the traditional CVD risk factors, in a population with a relatively low to intermediate risk of CVD and provided additional predictive information for the development of CVD over that obtained from the traditional CVD risk factors. Measurement of the baPWV may be a tool for CVD risk prediction in general clinical practice in subjects with a low to intermediate CVD risk.
Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis

Toshiaki Ohkuma, Toshiharu Ninomiya, Hirofumi Tomiyama, Kazuomi Kario, Satoshi Hoshide, Yoshikuni Kita, Toyoshi Inoguchi, Yasutaka Maeda, Katsuhiko Kohara, Yasuharu Tabara, Motoyuki Nakamura, Takayoshi Ohkubo, Hirotaka Watada, Masanori Munakata, Mitsuru Ohishi, Norihisa Ito, Michinari Nakamura, Tetsuo Shoji, Charalambos Vlachopoulos and Akira Yamashina

on behalf of the Collaborative Group for J-BAVEL (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies)*

Hypertension. 2017;69:1045-1052; originally published online April 24, 2017; doi: 10.1161/HYPERTENSIONAHA.117.09097

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/69/6/1045

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2017/04/24/HYPERTENSIONAHA.117.09097.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/
Supplementary Materials

BRACHIAL-ANKLE PULSE WAVE VELOCITY AND THE RISK PREDICTION OF CARDIOVASCULAR DISEASE: AN INDIVIDUAL PARTICIPANT DATA META-ANALYSIS

Authors:

Toshiaki Ohkuma,1 Toshiharu Ninomiya,2 Hirofumi Tomiyama,3 Kazuomi Kario,4 Satoshi Hoshide,4 Yoshikuni Kita,5 Toyoshi Inoguchi,6 Yasutaka Maeda,7 Katsuhiko Kohara,8 Yasuharu Tabara,9 Motoyuki Nakamura,10 Takayoshi Ohkubo,11 Hirotaka Watada,12 Masanori Munakata,13 Mitsuru Ohishi,14 Norihisa Ito,15 Michinari Nakamura,16 Tetsuo Shoji,17 Charalambos Vlachopoulos,18 Akira Yamashina,3 on the behalf of the collaborative group for Japan Brachial-Ankle pulse wave VELOCITY individual participant data meta-analysis of prospective studies (J-BAVEL)

Affiliations:

1. Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
2. Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University
3. Department of Cardiology, Tokyo Medical University
4. Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine
5. Faculty of Nursing Science, Tsuruga Nursing University
6. Innovation Center for Medical Redox Navigation, Kyushu University
7. Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University
8. Department of Regional Resource Management, Faculty of Collaborative Regional Innovation, Ehime University

9. Center for Genomic Medicine, Kyoto University Graduate School of Medicine

10. Department of Internal Medicine, Iwate Medical University

11. Department of Hygiene and Public Health, Teikyo University School of Medicine

12. Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine

13. Research Center for Lifestyle-related Disease, Tohoku Rosai Hospital

14. Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University

15. Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine

16. Cardiovascular institute Japan

17. Department of Vascular Medicine, Osaka City University Graduate School of Medicine

18. Hypertension and Cardiometabolic Unit, (1st) Department of Cardiology, Athens Medical School, Hippokration Hospital

**Short title:** Brachial-ankle pulse wave velocity and prognosis

**Corresponding author:**

Hirofumi Tomiyama, MD, FAHA

Affiliations: Department of Cardiology, Tokyo Medical University

Address: 6-7-1 Nishi-Shinjuku, Tokyo, Japan

Phone: (+81) 3-3342-6111

Fax: (+81) 3-3342-4820

E-mail: tomiyama@tokyo-med.ac.jp
Appendix 1: Supplemental Methods

Study population

The Japan Brachial-Ankle pulse wave VElocity individual participant data meta-analysis of prospective studies (J-BAVEL) is an individual participant data meta-analysis of the cohort studies that investigated the association between baPWV and the risk of all-cause mortality and CVD, conducted by the baPWV IPD meta-analysis study group. This collaborative study included 14 cohort studies conducted in Japan (including 9 published and 5 unpublished studies). The inclusion criteria for the collaborative project were as follows: 1) prospective cohort study; 2) baPWV measured at the baseline; 3) date of death or development of CVD recorded during follow-up. A steering committee at the Department of Cardiology, Tokyo Medical University, collected and collated the data, and conducted the quality control. In total, the individual data of 20,206 participants from 14 cohorts were included in the present project. Permission to submit the data from each cohort study, in the event of any ethical issues, to the steering committee was obtained from the relevant institutional review boards.

Figure 1 depicts the process used to select the study population. We excluded 3,171 subjects who had a history of CVD or were undergoing hemodialysis, 10 subjects whose age data were not available or who were aged <18 years old, and 340 subjects in whom the baPWV was not measured at the baseline. In addition, 1,985 subjects were excluded because of suspected inaccurate baPWV measurement (1,570 subjects in whom the ankle-brachial index [ABI] was not measured and thus validation of accurate baPWV could not be obtained, 316 subjects in whom the ABI values were <0.9, 5 subjects with a difference of the baPWV between the right and left sides of ≥10 m/s, and 94 subjects with atrial fibrillation). After further excluding participants for whom follow-up data for mortality (n = 1,319) or CVD were not available (n = 27), a final total of 13,381 subjects from 7 cohorts (including 5 published studies and 2 unpublished studies) were included in the analysis of the risk for all-cause mortality, and 14,673 participants from 8 studies (including 5 published studies and 3 unpublished studies) were enrolled in the analysis of the risk for CVD.

Measurement of the baPWV and ABI

The BaPWV was measured using a volume-plethysmographic apparatus (BP-203RPE II form PWV/ABI; Omron Healthcare Co., Ltd., Kyoto, Japan) after the patient had rested for at least 5 minutes in the supine position. Four oscillometric cuffs were wrapped around both arms and lower legs, with electrocardiographic electrodes placed on both wrists. The cuffs were connected to a plethysmographic sensor that determines the volume pulse form and an oscillometric pressure sensor that measures the blood pressure. They were simultaneously pressurized to the approximate value of the patient’s diastolic pressure so that the pulse volume waveforms were recorded using semiconductor pressure sensors. The distance between the sampling points of the baPWV was calculated automatically according to the height of the subject. The path length from the suprasternal notch to the ankle (La) was obtained using the following equation: La = 0.8129 × height (in cm) + 12.328. The path length from the suprasternal notch to the brachium (Lb) was obtained using the following equation: Lb = 0.2195 × height - 2.0734. The baPWV was calculated according to the following formula: baPWV = (La-Lb)/Tba, where Tba was the time interval between the wavefront of the brachial waveform and that of the ankle waveform. Two readings of the baPWV were obtained at the same time on the right side and left side, and the average of these readings was used for the present study. The angle of rise of the pressure waveform and the amplitude of the pressure waveform are diminished in cases with inaccurate recording of the pressure waveform. These findings were frequently observed in
cases with ABI <0.95. The period of sampling of the pressure waveform is 10 seconds, and in patients with atrial fibrillation, the pressure wave transit time is not constant during this sampling period. Therefore, the pressure wave recording might not be accurate in subjects with ABI <0.90 and/or those with atrial fibrillation. Thus, we excluded such subjects and also those with a marked difference of the baPWV between the two sides (which suggests inaccurate recording of the pressure waveform on one side), along with those in whom the ABI was not measured at all. The baPWV levels were categorized into quintiles.

Risk factors

Body mass index (BMI) was calculated as the weight (in kilograms) divided by height (in meters) squared. Blood pressure was measured with a standard sphygmomanometer in all cohorts. The average of the values measured on the right side and left side was used in the present study. Hypertension was defined as blood pressure $\geq 140/90$ mmHg and/or current use of antihypertensive agents. Diabetes was defined as a fasting blood glucose level of $\geq 7.0$ mmol/L, a random blood glucose level of $\geq 11.1$ mmol/L, a hemoglobin A1c level of $\geq 6.5$%, and/or current use of antidiabetic agents. Serum total cholesterol and serum high-density lipoprotein (HDL) cholesterol were determined enzymatically. Smoking habit was classified as current smoker or not smoking currently. To estimate the CVD risk of individual participants, the Framingham risk score (FRS)$^{26}$ was calculated. Study subjects were categorized according to the FRS as being at a low (10-year risk $< 10\%$: men, FRS $\leq 5$ and women, FRS $\leq 9$), intermediate (10-year risk 10-20%: men, FRS 6-8 and women, FRS 10-14), or high risk (10-year risk $\geq 20\%$: men, FRS $\geq 9$ and women, FRS $\geq 15$) of developing CVD.$^{17,18}$

Endpoints

During the follow-up period, the survival status and incidence of CVD (defined as the incidence of stroke and ischemic heart disease) were ascertained. In the Ohasama study, the incidence of CVD was defined as a composite of the incidence of stroke and the cardiovascular mortality (death from diseases of the circulatory system [ICD-10 code I00-I99]), because information on ischemic heart disease was unavailable. In the analysis for all-cause mortality, the Ehime cohort was excluded, because information on death events was unavailable for this cohort.

Statistical analysis

The meta-analysis was conducted according to the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines.$^{19}$ The pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) for the outcomes were estimated using the stratified Cox proportional hazards regression model, in which the cohort effect was adjusted as a fixed effect by taking each cohort as a strata variable. The pooled risk estimates per every one standard deviation increase of the baPWV were estimated by the relevant Cox model including baPWV as a continuous variable. Multivariate-adjustment was made for age, sex, brachial systolic blood pressure, history of use of antihypertensive agents, hemoglobin A1c, body mass index (BMI), serum total cholesterol, serum high-density lipoprotein (HDL) cholesterol, and current smoking habit. The 7.7% ($n = 1,134/14,673$) of participants with missing data for any of these variables were excluded from the multivariable-adjusted analysis. The interaction between subgroups was tested by adding a multiplicative interaction term in the relevant Cox model. Heterogeneity across the included studies was analyzed using Cochran’s Q test and the $I^2$ statistic. To compare the accuracy of the risk assessment for the development of CVD between the models adjusted for known CVD risk factors (FRS) that incorporated/did not incorporate baPWV, receiver-operating-characteristic (ROC) curves
were plotted. The consistency of the area under the ROC curves (i.e., c-statistics) among models was estimated using DeLong’s method.\(^{20}\) The discriminatory ability was evaluated by calculating the category-free net reclassification improvement (NRI) and integrated discrimination improvement (IDI).\(^{21, 22}\) A two-sided \(P\) value of less than 0.05 was considered as indicative of statistical significance in all the analyses. The analyses were performed using the SAS software package, version 9.3 (SAS Institute Inc., Cary, NC) and the Stata software (release 13; StataCorp, College Station, TX).

References


Appendix 2:

Collaborators
# Masahide Nagano: Cardiovascular Center, Kumamoto Saiseikai Hospital, Kumamoto, Japan
# Ogata Yukiyo: Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine
# Tomoyuki Kabutoya: Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine
# Kei Asayama; Teikyo University School of Medicine
# Naoyuki Takashima: Dept. of Health Science, Shiga University of Medical Science
# Tanvir Turin Chowdhury: Department of Family Medicine, Department of Community Health Sciences, University of Calgary
# Kayo Mitsuki-Shinohara; Osaka City University
# Takeshi Yamashita; Cardiovascular institute Japan

Organization of study group:
- **Study Name:** Japan Brachial-Ankle pulse wave VElocity individual participant data meta-analysis of prospective studies (J-BAVEL)
- **Principle investigators:** Akira Yamashina, Hirofumi Tomiyama
- **Steering Committee:** Mitsuuru Ohishi, Kazuomi Kario, Testuo Shoji, Toshiharu Ninomiya, Masanori Munakata, Hirotaka Watada, Hirofumi Tomiyama, and Akira Yamashina
- **Participating Institute (investigators [study name]):**
  - Ehime University (Katsuhiko Kohara and Yasuharu Tabara); Kyushu University (Toshiharu Ninomiya and Toshiaki Ohkuma [Hisayama Study]); Iwate Medical University (Motoyuki Nakamura and Masahide Nagano); Teikyo University School of Medicine (Takayoshi Ohkubo and Kei Asayama [Ohasama Study]); Tsuruga Nursing University (Yoshikuni Kita, Naoyuki Takashima and Tanvir Turin Chowdhury[Takashima Cohort Study]); Jichi Medical University School of Medicine (Kazuomi Kario, Satoshi Hoshide, Ogata yukiyo and Tomoyuki Kabutoya [Japan Morning Surge Home Blood Pressure (JHOP) Study]); Osaka University (Naohisa Ito and Mitsuru Ohishi [Non-invasive Atherosclerotic evaluation of Hypertension (NOAH) Study]); Kyushu University (Toyoshi Inoguchi and Yasutaka Maeda [Kyushu Prevention Study of Atherosclerosis]); Kyushu University (Toyoshi Inoguchi and Yasutaka Maeda [Kyushu Prevention Study of Atherosclerosis]); Juntendo University (Hirotaka Watada); Osaka City University (Tetsuo Shoji and...
Kayo Mitsuki-Shinohara); Tohoku Rosai Hospital (Masanori Munakat [Japanese Trial On the Prognostic implication of baPWV (JTOPP) and Sendai Hemodialysis Cohort Study]); Cardiovascular institute Japan (Michinari Nakamura and Takeshi Yamashita); Tokyo Medical University (Akira Yamashina and Hirofumi Tomiyama)

Contribution statement

Study concept and design: Hirofumi Tomiyama and Akira Yamashina conceived of and designed this meta-analysis.

Acquisition of data: Toshiharu Ninomiya, Hirofumi Tomiyama, Kazuomi Kario, Satoshi Hoshide, Yoshikuni Kita, Toyoshi Inoguchi, Yasutaka Maeda, Katsuhiko Kohara, Yasuharu Tabara, Motoyuki Nakamura, Takayoshi Ohkubo, Hirotaka Watada, Masanori Munakata, Ohishi Mitsuru, Naohisa Ito, Mitstuyasu Nakamura, Tetsuo Shoji contributed to the acquisition of the data.

Analysis and interpretation of data: Toshiaki Ohkuma and Toshiharu Ninomiya contributed to the statistical analysis and interpretation of the data.

Drafting of the manuscript: Toshiaki Ohkuma, Toshiharu Ninomiya, and Hirofumi Tomiyama contributed to the drafting of the manuscript.

Critical revision:
Kazuomi Kario, Satoshi Hoshide, Yoshikuni Kita, Toyoshi Inoguchi, Yasutaka Maeda, Katsuhiko Kohara, Yasuharu Tabara, Motoyuki Nakamura, Takayoshi Ohkubo, Hirotaka Watada, Masanori Munakata, Mitsuru Ohishi, Naohisa Ito, Mitstuyasu Nakamura, Tetsuo Shoji, Charalambos Vlachopoulos and Akira Yamashina contributed to the critical revision of the manuscript.
Table S1: Number of events according to the included cohorts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehime Study¹</td>
<td>NA</td>
<td>NA</td>
<td>1,315</td>
<td>27</td>
<td>1,315</td>
<td>11</td>
<td>1,315</td>
<td>16</td>
</tr>
<tr>
<td>Hisayama Study²</td>
<td>2,884</td>
<td>169</td>
<td>2,884</td>
<td>117</td>
<td>2,884</td>
<td>46</td>
<td>2,884</td>
<td>75</td>
</tr>
<tr>
<td>Iwate Study³</td>
<td>955</td>
<td>75</td>
<td>955</td>
<td>26</td>
<td>955</td>
<td>4</td>
<td>955</td>
<td>22</td>
</tr>
<tr>
<td>Ohasama Study⁴</td>
<td>783</td>
<td>34</td>
<td>783</td>
<td>26*</td>
<td>NA</td>
<td>NA</td>
<td>739</td>
<td>22</td>
</tr>
<tr>
<td>Takashima Study⁵</td>
<td>4,574</td>
<td>236</td>
<td>4,561</td>
<td>57</td>
<td>4,573</td>
<td>16</td>
<td>4,562</td>
<td>42</td>
</tr>
<tr>
<td>J-HOP Study⁶</td>
<td>850</td>
<td>16</td>
<td>850</td>
<td>27</td>
<td>850</td>
<td>5</td>
<td>850</td>
<td>23</td>
</tr>
<tr>
<td>NOAH Study⁷</td>
<td>445</td>
<td>14</td>
<td>437</td>
<td>47</td>
<td>444</td>
<td>22</td>
<td>437</td>
<td>27</td>
</tr>
<tr>
<td>Kyushu Prevention Study of Atherosclerosis⁸</td>
<td>2,890</td>
<td>143</td>
<td>2,888</td>
<td>408</td>
<td>2,889</td>
<td>246</td>
<td>2,889</td>
<td>197</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>13,381</td>
<td>687</td>
<td>14,673</td>
<td>735</td>
<td>13,910</td>
<td>348</td>
<td>14,631</td>
<td>424</td>
</tr>
</tbody>
</table>

* Cardiovascular disease in the Ohasama study was defined as a composite of CVD death and stroke.

Abbreviations: N, number; CVD, cardiovascular disease; IHD, ischemic heart disease; NA, not available.

Numbers in parentheses represent the standard deviation.
Table S2: Association of the baPWV levels with the risk of the development of ischemic heart disease and stroke

<table>
<thead>
<tr>
<th>baPWV</th>
<th>N of event/ N of subjects</th>
<th>Age- and sex-adjusted HR (95% CI)</th>
<th>P</th>
<th>P for trend</th>
<th>Multivariate-adjusted HR (95% CI)</th>
<th>P</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic heart disease (n = 13,910, event = 348) *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;12.83</td>
<td>15/2,779</td>
<td>1.00 (reference)</td>
<td></td>
<td></td>
<td>1.00 (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.84-14.47</td>
<td>46/2,780</td>
<td>1.79 (0.99-3.21)</td>
<td>0.053</td>
<td></td>
<td>2.11 (1.01-4.42)</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>14.48-16.18</td>
<td>68/2,784</td>
<td>2.12 (1.20-3.75)</td>
<td>0.01</td>
<td>0.004</td>
<td>2.38 (1.15-4.91)</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>16.19-18.75</td>
<td>91/2,787</td>
<td>2.28 (1.29-4.03)</td>
<td>0.005</td>
<td></td>
<td>2.66 (1.29-5.48)</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>≥18.76</td>
<td>128/2,780</td>
<td>2.44 (1.37-4.32)</td>
<td>0.002</td>
<td></td>
<td>2.78 (1.33-5.82)</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>For every 1 SD (3.86 m/s) increment of the baPWV</td>
<td>348/13,910</td>
<td>1.12 (1.01-1.24)</td>
<td>0.04</td>
<td></td>
<td>1.11 (0.98-1.25)</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

| Stroke (n = 14,631, event = 424) † |                           |                                   |      |             |                                   |      |             |
| <12.88      | 16/2,926                  | 1.00 (reference)                  |      |             | 1.00 (reference)                  |      |             |
| 12.89-14.52 | 54/2,929                  | 2.18 (1.24-3.83)                 | 0.007|             | 2.42 (1.24-4.74)                 | 0.01 |             |
| 14.53-16.23 | 77/2,923                  | 2.63 (1.51-4.56)                 | <0.001| <0.001     | 2.75 (1.42-5.32)                 | 0.003| <0.001     |
| 16.24-18.75 | 103/2,927                 | 2.98 (1.72-5.16)                 | <0.001|             | 3.25 (1.69-6.25)                 | <0.001|             |
| ≥18.76      | 174/2,926                 | 4.21 (2.43-7.29)                 | <0.001|             | 4.12 (2.13-7.98)                 | <0.001|             |
| For every 1 SD (3.86 m/s) | 424/14,631                 | 1.28 (1.17-1.40)                 | <0.001|             | 1.24 (1.12-1.38)                 | <0.001|             |
increment of the baPWV

* The Ehime, Hisayama, Iwate, Takashima, J-HOP, NOAH, and Kyushu Prevention Study of Atherosclerosis cohorts were included in the analysis of the risk for ischemic heart disease.
† The Ehime, Hisayama, Iwate, Ohasama, Takashima, J-HOP, NOAH, and Kyushu Prevention Study of Atherosclerosis cohorts were included in the analysis of the risk for stroke.
‡ Adjusted for age, sex, brachial systolic blood pressure, history of use of antihypertensive agents, hemoglobin A1c, body mass index, serum total cholesterol, serum high-density lipoprotein cholesterol, and current smoking habit.
Abbreviations: baPWV, brachial-ankle pulse wave velocity; N, number; CI, confidence interval; HR, hazard ratio; SD, standard deviation.
### A) All-cause mortality

<table>
<thead>
<tr>
<th>Cohort</th>
<th>No of events/subjects</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hisayama(^2)</td>
<td>165/22864</td>
<td>1.06 (0.91, 1.23)</td>
</tr>
<tr>
<td>Iwate(^3)</td>
<td>75/655</td>
<td>1.10 (0.97, 1.46)</td>
</tr>
<tr>
<td>Ohasama(^1)</td>
<td>34/783</td>
<td>1.18 (0.86, 1.63)</td>
</tr>
<tr>
<td>Takashima(^2)</td>
<td>230/4574</td>
<td>1.21 (1.07, 1.36)</td>
</tr>
<tr>
<td>J-HCP®</td>
<td>16/860</td>
<td>1.21 (0.76, 1.06)</td>
</tr>
<tr>
<td>NOAH(^2)</td>
<td>14/445</td>
<td>1.15 (0.67, 1.99)</td>
</tr>
<tr>
<td>Kyushu Prevention(^2)</td>
<td>143/2280</td>
<td>1.16 (0.99, 1.37)</td>
</tr>
<tr>
<td>Overall (P = 0.6%, p = 0.92)</td>
<td></td>
<td>1.16 (1.08, 1.25)</td>
</tr>
</tbody>
</table>

### B) Cardiovascular disease

<table>
<thead>
<tr>
<th>Cohort</th>
<th>No of events/subjects</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehime(^1)</td>
<td>27/1315</td>
<td>1.22 (0.82, 1.82)</td>
</tr>
<tr>
<td>Hisayama(^2)</td>
<td>117/2884</td>
<td>1.38 (1.16, 1.63)</td>
</tr>
<tr>
<td>Iwate(^3)</td>
<td>26/955</td>
<td>1.24 (0.87, 1.78)</td>
</tr>
<tr>
<td>Ohasama(^1)</td>
<td>28/783</td>
<td>1.34 (1.02, 1.77)</td>
</tr>
<tr>
<td>Takashima(^2)</td>
<td>57/4561</td>
<td>1.47 (1.20, 1.80)</td>
</tr>
<tr>
<td>J-HCP®</td>
<td>27/850</td>
<td>1.44 (1.00, 2.09)</td>
</tr>
<tr>
<td>NOAH(^2)</td>
<td>47/437</td>
<td>1.44 (1.07, 1.95)</td>
</tr>
<tr>
<td>Kyushu Prevention(^2)</td>
<td>40/2288</td>
<td>1.57 (0.96, 1.16)</td>
</tr>
<tr>
<td>Overall (P = .491%, p = 0.056)</td>
<td></td>
<td>1.23 (1.14, 1.32)</td>
</tr>
</tbody>
</table>

**Figure S1.** Forest plots of the age- and sex-adjusted hazard ratios for A) all-cause mortality and B) development of cardiovascular disease per every one standard deviation increase of the baPWV in each cohort. Abbreviations: baPWV, brachial-ankle pulse wave velocity; CI, confidence interval. The values of the standard deviation of the baPWV in each cohort were the same as those shown in Table 1.
Figure S2. Comparison of the accuracy of assessment of the risk of development of cardiovascular disease between models incorporating and not incorporating baPWV. Abbreviations: baPWV, brachial-ankle pulse wave velocity; CI, confidence interval. Model FRS was adjusted for the Framingham risk score and type of cohort (Ehime, Hisayama, Iwate, Ohasama, Takahama, J-HOP, NOAH, and Kyushu Prevention Study of Atherosclerosis). Model baPWV was adjusted for the baPWV and type of cohort (Ehime, Hisayama, Iwate, Ohasama, Takahama, J-HOP, NOAH, and Kyushu Prevention Study of Atherosclerosis).
Figure S3. The cutoff value of baPWV that allows for optimal discrimination between patients at risk and not at risk of development of cardiovascular disease in the future: A) the length to (0, 1) on the ROC curve and B) the Youden index.

Abbreviations: baPWV, brachial-ankle pulse wave velocity; ROC, receiver-operating characteristic.

The cohorts included in the analysis were Ehime, Hisayama, Iwate, Okasama, Takashima, J-HOP, NOAH, and Kyushu Prevention Study of Atherosclerosis.