Preeclampsia

Angiogenic Markers and Cardiovascular Indices in the Prediction of Hypertensive Disorders of Pregnancy

Stefan Verlohren,* Frank H. Perschel,* Baskaran Thilaganathan, Lisa Antonia Dröge, Wolfgang Henrich, Andreas Busjahn, Asma Khalil

Abstract—Angiogenic and antiangiogenic factors have proven to be an accurate predictive means of preeclampsia. Echocardiographic studies have shown that women with preeclampsia exhibit significant cardiovascular strain, especially early-onset preeclampsia. The aim of this study is to determine preeclampsia risk with soluble fms-like tyrosin kinase 1/placental growth factor ratio, serum NT-proBNP (N-terminal pro B-type natriuretic peptide), and biophysical markers of cardiovascular function in a prospective case–control study. We examined a cohort of 110 pregnant women with uneventful pregnancy outcome (controls) and 129 with hypertensive pregnancy disorders, including 77 with preeclampsia and 52 with pregnancy-induced hypertension. Cardiac indices were obtained with a USCOM-1A monitor, and soluble fms-like tyrosin kinase 1, placental growth factor, and NT-proBNP were measured in serum samples on automated platforms. Logistic regression, as well as Cox proportional hazard analysis, was performed. There were significant contributions from all variables tested, except for heart rate, stroke volume index, and cardiac index to the prediction model. When testing accuracy of respective markers in combination (full model) versus individual markers (soluble fms-like tyrosin kinase 1/placental growth factor ratio and total peripheral resistance) was compared. The soluble fms-like tyrosin kinase 1/placental growth factor ratio and total peripheral resistance performed as good as the full model, except for hypertensive pregnancy disorders and pregnancy-induced hypertension, where the full model performed better. The additional assessment of biophysical and biochemical markers of cardiovascular strain in pregnancy increases the detection of the composite group of hypertensive pregnancy disorders, while not significantly improving detection of preeclampsia alone. This offers a more precise insight into the pathogenesis of the disease, as well as offering a window for intervention, possibly decreasing cardiovascular mortality in these women. (Hypertension. 2017;69:1192-1197. DOI: 10.1161/HYPERTENSIONAHA.117.09256.) • Online Data Supplement

Key Words: angiogenic and antiangiogenic factors ■ cardiovascular indices ■ hypertension ■ NT-proBNP ■ preeclampsia ■ sFlt-1/PlGF ratio

Hypertensive pregnancy disorders (HDPs), namely preeclampsia, are a major contributor to maternal and fetal morbidity and mortality.1 Definitions of these disease entities rely largely on clinical evaluations, such as blood pressure measurement and proteinuria assessment, which are known to be relatively crude and imprecise, especially in predicting HDP-related adverse outcomes.2 The understanding of the importance of an imbalance of angiogenic factors, such as soluble fms-like tyrosin kinase 1 (sFlt-1) and placental growth factor (PIGF), in the pathophysiology of preeclampsia has led to the introduction of sFlt-1/PIGF ratio into clinical practice as a predictive test for preeclampsia, as well as other placental-mediated adverse outcomes.3-8 In nonpregnant patients, circulating sFlt-1 is generated as a result of myocardial injury, and both sFlt-1 and PIGF are associated with the development of heart failure and related adverse outcomes.7,8 In accord with this sFlt-1/PIGF data, echocardiographic studies have consistently shown that women with preeclampsia exhibit significant cardiovascular strain, especially early-onset preeclampsia.9-13 Moreover, women with a history of preeclampsia are known to have an increased risk for premature onset of cardiovascular morbidity and mortality in later life.14,15 These findings all support the hypothesis that preeclampsia involves a failure of the maternal cardiovascular system to adapt to the demands of pregnancy. While sFlt-1/PIGF ratio and role of echocardiography in preeclampsia have been evaluated, other biomarkers, such as NT-proBNP (N-terminal pro B-type natriuretic peptide), a marker for cardiac volume overload and cardiac insufficiency, and whether combinations of biomarker might add to the predictive accuracy of existing tests have not been studied extensively.16-20

Received February 15, 2017; first decision March 9, 2017; revision accepted April 6, 2017.

From the Departments of Obstetrics (S.V., L.A.D., W.H.) and Laboratory Medicine, Clinical Chemistry, and Pathobiocemistry (F.H.P.), Charité Universitätsmedizin Berlin, Germany; Labor Berlin - Charité Vivantes GmbH, Germany (F.H.P.); Fetal Medicine Unit, St Georges University Hospital Foundation NHS Trust and St Georges University London, UK (B.T., A.K.); and HealthTwist GmbH, Berlin, Germany (A.B.).

*These authors contributed equally to this work.

The online-only Data Supplement is available with this article at http://hyper.ahajournals.org/lookup/suppl/doi:10.1161/HYPERTENSIONAHA.117.09256/-/DC1.

Correspondence to Stefan Verlohren, Department of Obstetrics, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin. E-mail stefan.verlohren@charite.de

© 2017 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.117.09256
Before biochemical and biophysical cardiovascular markers can be used in combination to predict preeclampsia, their relative importance and independence must first be ascertained. The aim of this study is to determine preeclampsia risk with sFlt-1/PIGF ratio, serum NT-proBNP, and biophysical markers of cardiovascular function in a prospective case–control study of normal and preeclamptic pregnant women.

Methods

Patients
This is a nested, prospective case–control study conducted at St George’s Hospital London, United Kingdom. Institutional review board approval was granted for this study, and informed written consent was obtained prospectively from all participants in the main ongoing study.

Women with singleton pregnancies attending for prenatal care in the Fetal Medicine Unit were recruited. Patients were eligible for recruitment if they presented with either de novo hypertension, de novo proteinuria, or clinical signs and symptoms of preeclampsia. Patients were followed up, and clinical outcome was recorded. Clinical outcome was categorized according to the guidelines of the Royal College of Obstetricians and Gynaecologists. Briefly, hypertension was defined as the repeated measurement of systolic blood pressure of ≥140 mm Hg (Korotkoff I) and diastolic blood pressure of ≥90 mm Hg (Korotkoff V). Proteinuria was defined as the excretion of 300 mg protein or greater per day in the 24-hour urine collection or a repeated dipstick of ≥1+. Pregnancy-induced hypertension (PIH) was defined as the new onset of hypertension after 20 weeks of gestation, and preeclampsia (PE) was defined when additional proteinuria was diagnosed. Pregnant women who had an uneventful pregnancy outcome were classified as controls. PE and PIH were analyzed together as HDP, and an optimal control group was constructed of non-HDP, hypertensive pregnancies filtered to exclude women with birth weight below 5th percentile. uterine artery (UtA) Doppler mean pulsatility index (PI) >1.25, and cerebro-placental ratio multiples of the medians below 25th percentile, uterine artery (UtA) Doppler mean pulsatility index (PI) >1 indicates a proportional increase in risk for shorter pregnancy.

Ultrasound and Doppler Assessments
Gestational age was calculated from the crown-rump length measurement at 11 to 13 weeks, and only 1 (the last) examination per pregnancy was included in the analysis. The umbilical artery and middle cerebral artery Doppler waveforms were recorded using color Doppler, and the PI calculated according to a standard protocol. In brief, middle cerebral artery PI values were obtained in the space where the artery passes by the sphenoid wing close to the Willis circle, and umbilical artery PI values were obtained in free loops of umbilical cord. The measurements were obtained in the absence of fetal movement and keeping the insonation angle with the examined vessels <30°. The cerebro-placental ratio was calculated as the simple ratio between the middle cerebral artery PI and the umbilical artery PI. To record the UtA Doppler, the transducer was placed over the iliac fossa and the course of the UtA followed from the lateral pelvic wall, across the external iliac artery using color Doppler. Pulsed Doppler was then applied 1 cm medial to the crossover point. The angle of insonation used was <30°. When 3 similar consecutive waveforms were obtained, the PI was measured, and the mean PI of the left and the right UtA were calculated. The operators were blinded to the clinical information of the patients.

Biophysical Cardiovascular Marker Assessments
Maternal height, weight, and blood pressure were obtained prior to hemodynamic assessment. Blood pressure was obtained using an upper arm automatic blood pressure monitor (Microlife; Microlife AG Swiss Corporation, Switzerland) in a semi-recumbent position, with the arm well supported and using an appropriate-sized cuff. Cardiac indices (CIs) were obtained with an USCOM-1A monitor, which uses continuous wave Doppler, with a nonimaging probe in the suprasternal notch to obtain velocity time integrals of transaortic blood flow at the left ventricular outflow tract. Using an anthropometric algorithm, which correlates the outflow tract diameter with the patient’s given height, USCOM-IA uses the velocity time integrals to compute stroke volume (SV) and, therefore, cardiac output and produce a complete hemodynamic profile, including heart rate, SV, cardiac output, and total peripheral vascular resistance (TPR). Each Doppler acquisition used for analysis had a minimum of 2 consecutive Doppler profiles (cardiac cycles). Acquisitions with the least amount of interference and the best quality velocity time integrals, deemed by the study investigator to best represent transaortic blood flow, were obtained in the device’s flowtracer mode. By calculating the body surface area using examination weight and height, USCOM-IA calculates the indexed hemodynamic variable corrected for body surface area. The parameters examined include CI, SV index, and TPR index (TPRI). The operators were blinded to the clinical information of the patients.

Biochemical Cardiovascular Marker Assessments
sFlt-1, PIGF, and NT-proBNP were measured using automated electrochemiluminescence immunoassays on the Roche cobas platform (Roche Diagnostics GmbH, Mannheim, Germany). Intra- and interassay coefficients of variation were found to be <5%. The assay operators were blinded to the clinical information of the patients.

Statistics
Measures have been adjusted to an expected value for the respective pregnancy week. We computed expected values for control subjects by linear modeling and computed MoM. These values were computed by dividing measures by the expected median of control group. Group comparisons were done by analysis of variance, followed by a post hoc Dunnett test, with controls as the reference group. Analysis was based on the adjusted MoM values. NT-proBNP and sFlt-1/PIGF ratio followed a log-normal distribution and were transformed before analysis. For the logistic regression, an odds ratio of 2 indicates an increase of 1 step in the log scale doubles the risk as compared with the MoM norm. For the stepwise forward regression, variables CI MoM, TPR MoM, NT-proBNP MoM, and sFlt-1/PIGF ratio MoM were included. Because of scattered missing values in these measurements, the overall sample size was reduced (n=203). For each step, we calculated sensitivity and specificity. Cox proportional Hazard analysis was performed. Because of missing values, this analysis was calculated in a univariate way for various potential predictors. A significant odds ratio >1 indicates a proportional increase in risk for shorter pregnancy.

Table 1. Baseline Characteristics and Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls (n=110)</th>
<th>HDP (n=129)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>31 (27/35)</td>
<td>33 (28/36)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>77 (70%)</td>
<td>79 (61%)</td>
</tr>
<tr>
<td>Asian</td>
<td>16 (15%)</td>
<td>24 (19%)</td>
</tr>
<tr>
<td>Black</td>
<td>12 (11%)</td>
<td>24 (19%)</td>
</tr>
<tr>
<td>Mixed</td>
<td>5 (5%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Booking BMI</td>
<td>24.1 (22.3/28.2)</td>
<td>27 (24/32)</td>
</tr>
<tr>
<td>Exam sBP</td>
<td>115 (108/124)*</td>
<td>144 (135/152)</td>
</tr>
<tr>
<td>Exam dBP</td>
<td>72 (68/81)*</td>
<td>93 (89/100)</td>
</tr>
<tr>
<td>Birth weight</td>
<td>3495 (3212/3729)*</td>
<td>2875 (1870/3340)</td>
</tr>
<tr>
<td>Gestation at assessment</td>
<td>35 (28/36)</td>
<td>35 (31/36)</td>
</tr>
<tr>
<td>Gestation at delivery</td>
<td>40 (39/41)*</td>
<td>37 (35/39)</td>
</tr>
</tbody>
</table>

Values are median (25th/75th percentile) or frequency (%). MoM indicates body mass index; dBP, diastolic blood pressure; HDP, hypertensive pregnancy disorders; and sBP, systolic blood pressure.

*Significance P≤0.05.
Results

Baseline Characteristics and Descriptive Statistics

A total of 110 pregnant women with uneventful pregnancy outcome (controls) and 129 with HDP (77 with PE and 52 with PIH) were included in the analysis. Patients with HDPs were more likely to have a higher BMI at booking, a higher systolic and diastolic blood pressure at examination, shorter pregnancy duration, and a smaller baby (Table 1). No differences existed in the gestational week at examination (median 35 weeks), maternal age, or ethnicity (Table 1). At examination, patients with HDP had a significant higher mean UtA PI, umbilical artery PI, and lower middle cerebral artery PI, as well as lower cerebro-placental ratio (Table 2). Mean arterial pressure, TPRI, sFlt-1/PlGF ratio, and NT-proBNP levels were significantly higher in HDP compared with controls, but no differences existed in heart rate, SV index, or CI (Table 2).

Univariate Logistic Regression and Correlation of Markers

There were significant contributions from all variables tested except for heart rate, SV index, and CI (Figure 1; Table S1 in the online-only Data Supplement). Excluding blood pressure, the highest significant odds ratio was for sFlt-1/PlGF ratio (odds ratio, 1.92; 95% confidence interval, 1.62–2.31), NT-proBNP (odds ratio, 1.51; 95% confidence interval, 1.31–1.76), and TPRI (odds ratio, 1.61; 95% confidence interval, 1.36–1.91). The corresponding receiver operating characteristic analysis gave area under the curve values of 84% for sFlt-1/PlGF ratio, 79% for TPRI, and 69% for NT-proBNP (Table 3). When comparing markers in various quartiles, there is a significant positive correlation between sFlt-1/PlGF ratio and NT-proBNP levels in HDP but not control pregnancies (Figure 2). There is a moderate but significant correlation of TPRI with sFlt-1/PlGF ratio in HDP, but not control pregnancies (Figure S1).

Multivariable Logistic Regression

For distinction between HDP and control pregnancies, CI, TPRI, sFLT-1/PLGF ratio, but not NT-proBNP, were statistically significant on multivariable logistic regression analysis (Figure 3; Table S2). When testing accuracy of respective markers in combination (full model) versus individual markers (sFlt-1/PlGF...
ratio and TPRI) was compared, the sFlt-1/PlGF ratio performed as good as the full model, except for controls versus HDP and controls versus PIH, where the full model performed better. TPRI performed as well as the full model in controls versus HDP; in all other comparisons, the full model performed better. TPRI performed as well as the sFlt-1/PlGF ratio for controls versus HDP and controls versus PIH. In controls versus PE, the sFlt-1/PlGF ratio performed significantly better than TPRI (Table 3).

Cox Proportional Hazard

An analysis of the prediction of using Cox proportional hazard showed that lower CI and higher TPRI, NT-proBNP, and sFlt-1/PlGF ratio corresponded with shorter remaining pregnancy duration (Table S3).

Discussion

This is the first study to prospectively assess both biochemical and biophysical markers of cardiovascular strain or placenta dysfunction in a cohort of patients with HDP and in healthy pregnant women. Many studies have shown the potential usefulness of biochemical markers, namely sFlt-1/PlGF ratio, in predicting preeclampsia. More recently, studies have demonstrated that preeclampsia involves maternal cardiovascular impairment—principally involving adverse cardiac remodeling and diastolic dysfunction. While the sFlt-1/PlGF ratio is increasingly becoming a part of routine clinical care and was recently recommended as a rule out test by the National Institute for Health and Care Excellence in the United Kingdom, biophysical assessment of maternal cardiovascular function does not yet have a defined role in clinical practice.

In our cohort, we aimed to clarify to what extent the assessment of biochemical and biophysical cardiovascular marker in isolation or combination could improve prediction of preeclampsia. In addition to routinely collected clinical data and standard Doppler evaluations, we evaluated biophysical (heart rate, SV, CI, and TPRI) as well as biochemical (sFlt-1/PlGF ratio and NT-proBNP) markers of cardiovascular function in women with a healthy pregnancy and those with HDP—a group that included preeclampsia and PIH. The rational for combining these different HDP groups was that both categories have been shown to exhibit cardiovascular strain.

To eliminate the bias of latent placental dysfunction in the

Table 3. Comparative ROC Analysis of Prediction Models

<table>
<thead>
<tr>
<th>Groups</th>
<th>AUC Full Model</th>
<th>AUC sFLT-1/PIGF</th>
<th>AUC TPRI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control vs HDP</td>
<td>0.903</td>
<td>0.837</td>
<td>0.786</td>
<td>0.026</td>
</tr>
<tr>
<td>Control vs PIH</td>
<td>0.844</td>
<td>0.689</td>
<td>0.752</td>
<td>0.003</td>
</tr>
<tr>
<td>Control vs PE</td>
<td>0.966</td>
<td>0.942</td>
<td>0.807</td>
<td>0.014</td>
</tr>
<tr>
<td>PIH vs PE</td>
<td>0.916</td>
<td>0.878</td>
<td>0.564</td>
<td>0.167</td>
</tr>
<tr>
<td>Late PE vs early PE</td>
<td>0.978</td>
<td>0.982</td>
<td>0.644</td>
<td>0.421</td>
</tr>
</tbody>
</table>

AUC indicates area under the curve; HDP, hypertensive pregnancy disorders; PE, preeclampsia; PIH, pregnancy-induced hypertension; ROC, receiver operating characteristic; sFlt-1/PlGF, soluble fms-like tyrosin kinase 1/placental growth factor; and TPRI, total peripheral resistance index.

Figure 2. Relation of NT-proBNP (N-terminal pro B-type natriuretic peptide) to soluble fms-like tyrosin kinase 1/placental growth factor (sFlt-1/PlGF) ratio. For the comparison of the control group (CO) with hypertensive pregnancy disease group (HPD), the correlation between NT-proBNP (logarithmic scale, y axis) and sFlt-1/PlGF ratio (logarithmic scale, x axis) is displayed. In controls, this correlations is not significant (r=1.33), while it is in HPD (r=0.56).

Figure 3. Multivariate logistic regressions for controls (CO) versus hypertensive pregnancy disease group (HPD). The variables contributing to the model were total peripheral resistance index (TPRI), cardiac index (CI), soluble fms-like tyrosin kinase 1/placental growth factor (sFlt-1/PlGF) ratio in logarithmic scale (sFlt1_PlGF_ratio_log), and NT-proBNP (N-terminal pro B-type natriuretic peptide) in logarithmic scale (NT.proBNP_log). MoM indicates multiples of the medians.
control group, we constructed an optimal control cohort containing well-grown fetuses with normal uterine and umbilical Doppler indices. We demonstrated that sFlt-1/PlGF ratio and TPRI showed usefulness in the prediction for HDP, with some additional, moderate contribution from NT-proBNP and CI.

Clinical and Research Implications
There are several implications for clinical practice arising from these findings apart from confirming the high predictive accuracy of the sFlt-1/PlGF ratio in line with recent findings from large prospective studies. Our analysis demonstrated that several additional biochemical and biophysical cardiovascular markers are also related to HDP, namely NT-proBNP, TPRI, and UtA Doppler assessment, suggesting that these variables may potentially contribute toward HDP prediction. However, an analysis of correlations demonstrated a strong interdependence of the putative placental biomarkers sFlt-1/PlGF to NT-proBNP, an established cardiovascular biomarker produced by cardiac myocytes exposed to volume overload. This is an interesting finding, which suggests that either NT-proBNP or is also related to placental dysfunction or that sFlt-1/PlGF may also be acting as a cardiovascular biomarker in HDP. Multivariable logistic regression analysis demonstrated that only TPRI, CI, and sFlt-1/PlGF, but not NT-proBNP, were independent predictors of HDP, suggesting that prediction models using combinations of these cardiovascular markers may have increased performance and predictive accuracy for HDP. Similarly, the Cox proportional hazard analysis showed that an increase in the sFlt-1/PlGF ratio, TPRI, and NT-proBNP or decrease in CI were all associated with a higher likelihood for imminent delivery.

Assessment of biomarker performance by comparative receiver operating characteristic curve analysis demonstrated similar performance for prediction models of HDP containing all biomarkers, TPRI alone, or sFlt-1/PlGF alone. It is important to acknowledge that as a case–control rather than a screening study, measures of test performance are biased with attenuation of the receiver operating characteristic curve because of pooled covariate data. Regardless of this limitation, the data provide cause for optimism that assessing biophysical and biochemical markers of cardiovascular strain in pregnancy offers a more precise insight into the pathogenesis of HDP, as well as offering a window for prediction, intervention, and possibly decreasing subsequent cardiovascular mortality in these women.

Study Strengths and Limitations
The strength of the study is that biochemical and biophysical marker of cardiovascular function have been concurrently in the same patients nested within a large prospective study cohort. The study has only a single assessment point, when >1 measurement and analysis of marker slopes may have yielded higher predictive accuracy. Our mean time of assessment was 35 weeks of gestation corresponding to a mainly late-onset HDP cohort. Furthermore, the majority of patients with pre-eclampsia had mild rather than severe disease. Future studies should distinguish between early and late HDP cohorts because this disease classification may affect precision in detection. Finally, as previously mentioned, the case–control study design does not lend itself to accurate assessment of screening performance by receiver operating characteristic analysis.

Perspectives
Including markers of cardiovascular function into assessment of HDPs takes into account the contribution of cardiovascular alterations to the pathophysiology of HDPs. The failure of the maternal heart to adapt to the demands of pregnancy is seen to contribute substantially to hypertensive disorder–related adverse outcomes. Moreover, echocardiographic alterations are observed to persist postpartum, contributing potentially to premature onset of cardiovascular morbidity in later life. The additional assessment of biophysical and biochemical markers of cardiovascular strain in pregnancy does not seem to significantly improve the detection of preeclampsia as yielded by the sFlt-1/PlGF ratio. However, it does increase the detection of the composite group of HDPs. This offers a more precise insight into the pathogenesis of the disease, as well as offering a window for intervention, possibly decreasing cardiovascular mortality in these women.

Acknowledgments
We would like to acknowledge the expert technical assistance of Gerhild Fiolka performing the biochemical assays.

Sources of Funding
The study was supported by Roche Diagnostics, Germany.

Disclosures
S. Verlohren received lecture fees from Roche Diagnostics and ThermoFisherScientific and participated in advisory boards for Roche Diagnostics, ThermoFisherScientific, Ferring, and Alexion. The other authors report no conflicts.

References

Novelty and Significance

What Is New?

- Assessing biophysical and biochemical markers of cardiovascular function can help to predict hypertensive pregnancy disorders. This is the first study evaluating this combination of diagnostic tools.

What Is Relevant?

- Hypertensive pregnancy disorders, especially preeclampsia, go along with cardiovascular impairment. Noninvasively measuring cardiac index and total peripheral resistance, as well as maternal serum NT-proBNP (N-terminal pro B-type natriuretic peptide), can help to improve predictive accuracy of the soluble fms-like tyrosine kinase 1/placental growth factor ratio in certain patients.

Summary

The prediction of hypertensive pregnancy disorders but not preeclampsia is improved by adding cardiovascular markers to placental markers. In preeclampsia, the soluble fms-like tyrosine kinase 1/placental growth factor ratio remains the most accurate means of prediction.
Angiogenic Markers and Cardiovascular Indices in the Prediction of Hypertensive Disorders of Pregnancy

Stefan Verlohren, Frank H. Perschel, Baskaran Thilaganathan, Lisa Antonia Dröge, Wolfgang Henrich, Andreas Busjahn and Asma Khalil

Hypertension. 2017;69:1192-1197; originally published online May 1, 2017;
doi: 10.1161/HYPERTENSIONAHA.117.09256

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/69/6/1192

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2017/04/30/HYPERTENSIONAHA.117.09256.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Online Supplement

Angiogenic markers and cardiovascular indices in the prediction of hypertensive disorders of pregnancy

Stefan Verlohren1*, Frank H. Perschel2*, Baskaran Thilaganathan3 Lisa Antonia Dröge1, Wolfgang Henrich1, Andreas Busjahn4, and Asma Khalil3

1 Department of Obstetrics, Charité University Medicine Berlin, Germany, 2 Department of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité University Medicine, Berlin, Germany, 3 Fetal Medicine Unit, St. Georges University Hospital Foundation NHS Trust and St. Georges University London, UK, 4 HealthTwiSt GmbH, Berlin, Germany,

*equal contribution

Correspondence:
Stefan Verlohren, MD, PhD
Department of Obstetrics, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin
Tel: +49 30 450 664 445, Fax: +49 30 450 564 901
Email: stefan.verlohren@charite.de
Table S1

<table>
<thead>
<tr>
<th>Predictor</th>
<th>OR (CI)</th>
<th>p-value</th>
<th>Specificity</th>
<th>Sensitivity</th>
<th>ROC AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (5 years)</td>
<td>1.08 (0.94/1.23)</td>
<td>0.28910</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Booking BMI (5 units)</td>
<td>1.28 (1.11/1.47)</td>
<td>0.00051</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Exam Weight</td>
<td>1.02 (1.01/1.03)</td>
<td>0.00420</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Exam sBP MoM</td>
<td>2.64 (2.2/3.3)</td>
<td>0.00001</td>
<td>86</td>
<td>83</td>
<td>91 (88-95)</td>
</tr>
<tr>
<td>Exam dBP MoM</td>
<td>3.12 (2.5/4.1)</td>
<td>0.00001</td>
<td>93</td>
<td>85</td>
<td>94 (91-97)</td>
</tr>
<tr>
<td>UtA mean PI MoM</td>
<td>1.52 (1.32/1.8)</td>
<td>0.00001</td>
<td>92</td>
<td>50</td>
<td>73 (66-80)</td>
</tr>
<tr>
<td>UA PI MoM</td>
<td>1.2 (1.08/1.35)</td>
<td>0.00104</td>
<td>95</td>
<td>27</td>
<td>61 (54-68)</td>
</tr>
<tr>
<td>MCA PI MoM</td>
<td>0.76 (0.63/0.91)</td>
<td>0.00346</td>
<td>72</td>
<td>53</td>
<td>62 (54-70)</td>
</tr>
<tr>
<td>CPR MoM</td>
<td>0.81 (0.71/0.94)</td>
<td>0.00523</td>
<td>87</td>
<td>42</td>
<td>64 (57-72)</td>
</tr>
<tr>
<td>HR MoM</td>
<td>0.93 (0.8/1.09)</td>
<td>0.37800</td>
<td>63</td>
<td>55</td>
<td>55 (47-63)</td>
</tr>
<tr>
<td>SVI MoM</td>
<td>0.97 (0.82/1.15)</td>
<td>0.72925</td>
<td>84</td>
<td>25</td>
<td>53 (45-61)</td>
</tr>
<tr>
<td>CI MoM</td>
<td>0.87 (0.72/1.05)</td>
<td>0.14402</td>
<td>16</td>
<td>96</td>
<td>54 (46-62)</td>
</tr>
<tr>
<td>TPRI MoM</td>
<td>1.61 (1.36/1.91)</td>
<td>0.00001</td>
<td>87</td>
<td>61</td>
<td>79 (72-85)</td>
</tr>
<tr>
<td>NTproBNP logMoM</td>
<td>1.51 (1.31/1.76)</td>
<td>0.00001</td>
<td>76</td>
<td>56</td>
<td>69 (63-76)</td>
</tr>
<tr>
<td>sFlt-1/PIGF-ratio logMoM</td>
<td>1.92 (1.62/2.31)</td>
<td>0.00001</td>
<td>76</td>
<td>81</td>
<td>84 (79-89)</td>
</tr>
</tbody>
</table>

Supplementary Table S1 Univariate logistic regression and ROC analysis (AUC: 95% confidence interval) for control versus HDP
Table S2

<table>
<thead>
<tr>
<th>Predictor</th>
<th>OR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI MoM</td>
<td>2.38 (1.56-3.66)</td>
<td>0.001</td>
</tr>
<tr>
<td>TPRI MoM</td>
<td>2.67 (1.83-3.93)</td>
<td>0.001</td>
</tr>
<tr>
<td>NTproBNP logMoM</td>
<td>1.05 (0.87-1.28)</td>
<td>0.389</td>
</tr>
<tr>
<td>sFlt-1/PIGF-ratio logMoM</td>
<td>1.71 (1.39-2.13)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Supplementary Table S2: Multivariate logistic regression for controls versus HDP

Table S3

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI MoM</td>
<td>0.76 (0.60-0.97)</td>
<td>0.028</td>
</tr>
<tr>
<td>TPRI MoM</td>
<td>1.39 (1.19-1.63)</td>
<td>0.001</td>
</tr>
<tr>
<td>NTproBNP logMoM</td>
<td>1.56 (1.37-1.79)</td>
<td>0.001</td>
</tr>
<tr>
<td>sFlt-1/PIGF-ratio logMoM</td>
<td>1.90 (1.69-2.14)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Supplementary Table S3: Cox proportional hazards for HDP
Supplementary figure S1: Relation of TPRI to sFlt-1/PIGF-ratio. For the comparison of the control group (CO) with hypertensive pregnancy disease group (HTPD), the correlation between total peripheral resistance (TPRI, y-axis) and sFlt-1/PIGF ratio (logarithmic scale x-axis) is displayed. In controls, this correlation is not significant (r=0.133, n.a.), while it is in HTPD (r=0.56).