Application of Immunochemical Methods to the Identification and Characterization of Rat Kidney Inactive Renin

YUKIO TAKII, AMINTAS F.S. FIGUEIREDO, AND TADASHI INAGAMI

SUMMARY Identification of inactive prorenin in the kidney has been difficult due to rapid proteolytic conversion of the inactive zymogen to its active form in the tissue or during homogenization and purification. Immunochemical methods, Western blotting, direct radioimmunoassay, and immunofinity chromatography were used to isolate and identify rat kidney renin and prorenin and to determine their molecular weights without complete purification. Antisera to pure rat renin were raised in rabbits. A specific reaction between the antisera and rat renin was demonstrated by double immunodiffusion, inhibition of enzyme activity, and competitive radioimmunoassay. The anti-rat renin IgG did not cross-react with purified human renin or rat spleen or kidney cathepsin D. The IgG showed binding affinity to both inactive renin as well as active enzyme. A combination of affinity chromatographies consisting of pepstatin-Sepharose, IgG-Sepharose, and Affi-Gel Blue permitted rapid and complete separation of inactive renin from active renin in rat kidney extract. Neither inactive nor active renin preparations exhibited aspartyl protease activity on hemoglobin used as substrate. The apparent molecular weight of inactive renin was estimated as 50,000 by gel filtration. Electrophoresis of partially purified inactive renin in sodium dodecyl sulfate (SDS) polyacrylamide gel followed by transblotting of proteins to a nitrocellulose sheet and immunoochemical staining with anti-renin IgG showed a single protein band with a molecular weight of 48,000. Activation of inactive renin by trypsin was accompanied by the reduction of the 48,000-dalton native protein to a 39,000-dalton protein as determined by the SDS polyacrylamide gel electrophoresis and the transblotting. Gel filtration of active renin fraction in the kidney extract showed two forms of renin: high-molecular-weight (60,000) renin and low-molecular-weight (39,000) renin. High-molecular-weight renin was found to be a complex of low-molecular-weight renin and other protein(s) by SDS polyacrylamide gel electrophoresis analysis. Neither the high- nor the low-molecular-weight active renin showed a capacity for further activation by trypsin treatment. These results suggest that the inactive renin isolated in the present study is a zymogenlike precursor for renin and that it is different from active high-molecular-weight renin, which appears to be a complex of active enzyme and other proteins.

Key Words • rat renin antibodies • rat renal inactive prorenin • molecular weight • Western blotting • direct radioimmunoassay

SINCE the observation of spontaneous increase in renin activity of fresh renal extracts in acidic pH,1,2 similar or different types of the activatable renin or high-molecular-weight renin (molecular weight, 60,000) have been reported in the crude renin preparation from rabbit,3 hog,4 rat,5 dog,6 and human kidney7,8 and from Wilms' tumor.9 Most of these renins were already partially active, however, and their exact nature and identity were not clear unless the renin was at least partially purified.7,8 It was possible that some of them were complexes of active renin (molecular weight, 40,000) with other proteins of unknown nature.3,9-11 On the other hand, completely inactive renin can be either a proenzymc with a single polypeptide chain or a renin-inhibitor complex. Identification and isolation of inactive renin from the kidney for the purpose of its characterization have been hampered by its rapid spontaneous activation during its...
isolation because of high levels of proteases in kidney extracts. Studies on renal inactive renin require stabilization and rapid purification. Use of renin-specific IgG-Sepharose and other affinity columns permitted us to develop a partial purification method for inactive renin and to identify its molecular nature. Evidence was obtained that indicates the inactive renin in rat kidney is a single polypeptide protein of 48,000 daltons consistent with the structure of a proenzyme rather than a renin-inhibitor complex.

Materials and Methods

Pure renin was prepared by published methods from rat kidney, mouse submandibular gland, and human kidney. Cathepsin D was purified from rat spleen and rat kidney according to the published methods.

Preparation of Antibodies

Pure rat renin (500 μg) was conjugated with 250 μg of tetanus toxoid (40 μg, gift of Dr. F. Chytil of Vanderbilt University, Nashville, TN) with 15 μg of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (Bio-Rad Laboratories, Richmond, CA) in an overnight reaction at 22°C and pH 5.0. The pH was maintained by the addition of 1 N HCl. Antisera were raised by immunizing Dutch-belted rabbits at multiple intradermal sites with the renin–tetanus toxoid complex (80 μg renin equivalent) in 50% Freund’s complete adjuvant (Miles Laboratories, Inc., Elkhart, IN) for the initial immunization followed by biweekly boosters with the same complex (10 μg renin equivalent for each booster) in 50% Freund’s incomplete adjuvant.

The gamma globulin–containing fraction was precipitated from the pooled rabbit sera with 45% saturated ammonium sulfate, dialyzed against 0.1 M phosphate buffer, pH 7.0. Immunoglobulins were eluted with 1.0 M acetic acid and reacted with a protein A–Sepharose (Pharmacia Fine Chemicals, Inc., Piscataway, NJ) column (0.8 x 4.0 cm) that had been equilibrated in 0.1 M Tris-hydrochloride buffer, pH 8.5, and passed through a DEAE (diethylaminoethyl) cellulose (DE-52, Whatman Inc., Clifton, NJ) column (1.0 x 20 cm) equilibrated with the same buffer. The nonretained protein was applied to a protein A–Sepharose (Pharmacia Fine Chemicals, Inc., Piscataway, NJ) column (0.8 x 4.0 cm) that had been equilibrated in 0.1 M phosphate buffer, pH 7.0. After exhaustive washing with the same buffer, immunoglobulins were eluted with 1.0 M acetic acid and dialyzed against 0.1 M phosphate buffer, pH 7.0. Precipitates were removed by centrifugation. The resulting supernatant was pooled and used as crude antirenin IgG without concentration. Approximately 75% of the total titer activity of the antisera was recovered, which resulted in a fourfold purification. Antibodies to rat spleen cathepsin were prepared according to the published methods.

Direct Radioimmunoassay for Renin

The assay mixture consisted of 50 μL of unlabeled standard pure renin or samples in 0.1 M Tris-hydrochloride, pH 7.4, containing 0.1% bovine serum albumin, 50 μL of iodinated pure rat renin in the same buffer (prepared by the published method), and 50 μL of specific anti-rat renin IgG appropriately diluted in the same buffer. The amount of the labeled renin and antiserum was adjusted to optimize the assay sensitivity. Approximately 100 pg of rat renin can be determined by the present method. The mixture was diluted with 850 μL of 0.1 M Tris-hydrochloride buffer, pH 7.4, containing 0.15 M NaCl, 1 mM EDTA, 0.01% Triton X-100 (Sigma Chemical Co., St. Louis, MO), and 0.1% bovine serum albumin (Sigma Chemical Co.). After incubation of the assay mixture for an additional 40 hours at 4°C, the antigen-IgG complex was separated from unbound 125I-renin by adding 100 μL of Pansorbin (10% wt/vol; Calbiochem, La Jolla, CA), followed by centrifugation at 5,000 g for 15 minutes at 4°C, and the bound tracer was then counted by a gamma counter.

Activation of Inactive Renin

Activation of inactive renin was obtained with trypsin (trypsin-tolysulfonyl phenylalanyl chloromethylketone, Worthington Biochemicals Corp., Freehold, NJ). To 25 μL of a fractionated solution was added 25 μL of a freshly mixed solution of 2.5 μg of trypsin and 250 μg of bovine serum albumin in 0.1 M Tris-hydrochloride buffer, pH 7.5. Bovine serum albumin (0.5%) was added to the reaction mixture to protect activated renin from trypsin and thus optimize the efficiency of the activation. No loss of renin activity was observed even with 200 μg of trypsin under these conditions. After reaction for 30 minutes at 22°C, trypsin was neutralized by the addition of 100 μg of soybean trypsin inhibitor (Sigma Chemical Co., St. Louis, MO).

Renin and Cathepsin Activity

Renin activity was determined by the amount of angiotensin I formed during the incubation of 25 μL of renin at 37°C with 100 μL of plasma of nephrectomized rats (0.9 μM) in 190 μL of 0.2 M MES (morpholinethanesulfonic acid) buffer, pH 6.1, containing 8.7 mM EDTA and 3.0 mM phenylmethylsulfonyl fluoride (PMSF) for 20 to 60 minutes. The angiotensin I formed was determined by the radioimmunoassay method of Haber and colleagues. Inhibition of renin activity by the anti-renin antisera was tested by incubating 25 μL of renin with 25 μL of serially diluted antisera for 16 hours at 4°C in the presence of 0.1% bovine serum albumin at pH 6.8. Aliquots (25 μL) of this mixture were used for assaying the remaining renin activity. In the presence of bovine serum albumin a full renin activity was retained for 16 hours at 4°C in the absence of antisera. The activity observed without antisera was defined as 100%.

Cathepsin D activity was determined with 14C-labeled hemoglobin used as a substrate at pH 4.5 and 37°C, according to the methods of Williams and Lin. Rat spleen cathepsin D and anti-cathepsin D IgG were prepared according to the methods of Yamamoto and co-workers.

Separation of Inactive Renin from Active Renin

The Pepstatin-Sepharose gel was prepared according to the published method. Rats were first stunned then decapitated. Whole frozen rat kidneys (950 g
The adsorbed materials were eluted from the column with 4 M MgCl₂, the pH of which had been adjusted to 6.0 with 0.05 M sodium phosphate buffer, pH 6.5, containing 0.5 mM sodium tetrasionate, 0.5 mM Na₂EDTA, 0.08 mM PMSF (Sigma), 0.1 mM diisopropylphosphorofluoridate (DFP; Sigma), and 30% (vol/vol) of 2-methoxyethanol (Fisher Scientific Co., Pittsburgh, PA).

The insoluble residue was separated by centrifugation at 10,000 g for 30 minutes followed by filtration through layers of gauze. The extract was mixed with 600 g (wet cake) of DEAE cellulose (Whatman DE-52), the pH of the mixture was adjusted to 6.5, and the mixture was stirred gently for 6 hours. The DEAE cellulose was collected by filtration and washed in a Buchner funnel with cold distilled water. Renin was eluted by stirring the DEAE cellulose for 2 hours with 2 liters of 10 mM sodium phosphate, pH 6.5, containing 0.5 mM sodium tetrasionate, 0.5 mM Na₂EDTA, 0.08 mM PMSF, 0.1 mM DFP, 3% (vol/vol) 2-methoxyethanol, and 0.1 M NaCl. The DEAE cellulose was separated by filtration. The pH of the mixture was adjusted to 6.5, and the mixture then was centrifuged at 12,000 g for 30 minutes to remove precipitates. The clear supernatant (3.9 L) was applied to a column (50 x 25 cm) of peptatin-Sepharose gel, which was equilibrated with 0.02 M phosphate buffer, pH 6.5, containing 1 mM EDTA. After being washed with the same buffer, the column was eluted with successive stepwise changes of NaCl concentration to 1 M in the same phosphate buffer followed by 0.1 M Tris-hydrochloride buffer, pH 7.4. The unsorbed fractions and wash fractions containing inactive renin were combined and were fractionated with ammonium sulfate. The fraction precipitated between 30 and 65% ammonium sulfate saturation was collected by centrifugation at 10,000 g for 30 minutes at 4°C and dissolved in 50 ml of 0.1 M HEPES (N-2-hydroxyethylpiperazine-N'-2-ethane sulfonic acid) buffer, pH 7.1. After dialyzing overnight against the HEPES buffer, the dialyzed sample was centrifuged to remove insoluble materials. The remaining supernatant was applied to an anti-renin IgG-Sepharose column.

Immunofinity Column Chromatography

Crude IgG was coupled to cyanogen bromide-activated Sepharose. One milliliter of the Sepharose contained 1.1 mg of crude IgG. The IgG-Sepharose column (1.0 x 10 cm) was equilibrated in 0.1 M HEPES buffer, pH 7.1, containing 1 mM EDTA and 10% ethylene glycol. After the application of the renin solution, the column was washed with the HEPES buffer. The adsorbed materials were eluted from the column with 4 M MgCl₂, the pH of which had been adjusted to 6.0 with 0.05 M Tris base and dialyzed against several changes of 0.05 M Tris-hydrochloride buffer, pH 6.8, containing 1 mM EDTA and finally changed to 0.02 M phosphate buffer, pH 6.8, containing 1 mM EDTA.

Affinity Chromatography

The renin-containing solution obtained after the immunoaffinity chromatography was applied to a column (1.0 x 8.0 cm) of Affi-Gel Blue (Biorad) previously equilibrated in 0.02 M sodium phosphate buffer, pH 6.8, containing 1 mM EDTA according to the methods of Yokosawa and associates. It was washed with the phosphate buffer and eluted with stepwise increase of NaCl concentration to 0.5 M in the phosphate buffer.

Molecular Weight

Analytical gel filtration was run on a calibrated column (2.5 x 90 cm) of Sephadex G-100 (Pharmacia). In addition to the standard method of calibration, 14C-labeled bovine serum albumin and ovalbumin were used as internal molecular weight standards. The sodium dodecylsulfate-polyacrylamide (SDS-PAGE) was run according to the methods of Laemmli. The molecular weights of immunoreactive substances were determined by Western blotting technique according to the methods of Towbin and co-workers, in which proteins were transferred electrophoretically by transverse electric current from an SDS gel (10-18% polyacrylamide) to a nitrocellulose sheet (Millipore Corp., Bedford, MA) that was layered over the SDS gel. The nitrocellulose sheet was then treated sequentially with anti-renin IgG (1:550, or anti-renin antiserum), goat anti-rabbit IgG (1:50, gift of Dr. R.J. Workman of Vanderbilt University) and rabbit anti-horseradish peroxidase–horseradish peroxidase complex (1:250; Cappel Laboratories, Downington, PA). The methods were transferred electrophoretically by transverse electric current from an SDS gel (10-18% polyacrylamide) to a nitrocellulose sheet (Millipore Corp., Bedford, MA) that was layered over the SDS gel. The nitrocellulose sheet was then treated sequentially with anti-renin IgG (1:550, or anti-renin antiserum), goat anti-rabbit IgG (1:50, gift of Dr. R.J. Workman of Vanderbilt University) and rabbit anti-horseradish peroxidase–horseradish peroxidase complex (1:250; Cappel Laboratories, Downington, PA). Then stained with 3,3'-diaminobenzidine in the presence of H₂O₂. Standard molecular weight proteins (molecular weight, 14,300–92,000; Bio-Rad) transferred to the nitrocellulose sheet were stained with 10% amido black.

The protein concentration was determined by the
Figure 2. Displacement of 125I-renin from anti-renin IgG following exposure to rat renin or cathepsin D. Fifty microliters of anti-renin IgG diluted 1:100 in Tris-bovine serum albumin (see text) was incubated with 50 µL of 125I-renin for 30 minutes at 4°C. The mixture was diluted with 850 µL of Tris- NaCl-EDTA-Triton-bovine serum albumin (see text) before the addition of various quantities of renin (O) or cathepsin D (A) B = antibody-bound tracer; B o = antibody-bound tracer at zero base.

Folin-phenol reagent with bovine serum albumin (Sigma) used as a reference.

Results

Immunological Studies

Double diffusion of pure rat renin (electrophoretically homogenous) or crude rat renin preparations against anti-rat renin antisera on an agar plate produced a single precipitin line. A faint line was formed with hog kidney renin. No precipitin reaction was produced with human or mouse submandibular gland renin. On the other hand, the anti-rat renin antisera exhibited the ability to inhibit the enzyme activity of renin obtained from rat and hog kidneys and mouse submandibular gland (an example is shown in Figure 1). The antisera did not affect the human kidney renin activity even at the highest concentration tested (1:88 dilution). Similar inhibitory activities were observed with crude IgG. The antisera (1:100 dilution) did not inhibit cathepsin D obtained from rat spleen or rat kidney. Tested by immunohistochemical staining of rat kidney sections, the antisera stained juxtaglomerular cells exclusively sparing all other cells. The affinity of pure rat spleen cathepsin D to the anti-renin antiserum or IgG was tested with the direct radioimmunoassay method for renin (Figure 2). By this method approximately 100 pg of renin can be detected. Dissociation of bound 125I-renin was not observed even in the presence of an excess (10 ng) of cathepsin D. Anti-cathepsin D IgG (1:10 dilution) did not affect the activity of pure rat kidney renin.

Separation of Inactive Renin and Active Renin

As shown in Figure 3, renin activity was eluted from pepstatin-Sepharose in two separate peaks. The first renin peak in the pass-through fractions contained only a small portion (0.5%) of the total renin activity (open circles). The renin activity in these fractions increased markedly after the trypsin treatment (closed circles). The second renin peak in Figure 3 eluted by 0.1 M Tris-hydrochloride buffer accounted for approximately 80% of the total renin activity applied to the column. The trypsin treatment of the second fractions resulted in a slight reduction in the enzyme activity, not a further increase. The first renin peak in Figure 3 was adsorbed to the anti-rat renin IgG-Sepharose column and eluted by 4 M MgCl₂ (Figure 4). Active renin
Molecular Weight of Inactive Renin and Active Renin

The molecular weight of inactive renin was estimated by gel filtration on a Sephadex G-100 column. The inactive renin was eluted in fractions corresponding to a molecular weight of 50,000 (Figure 6B). The recovery of the potential enzyme activity from the Sephadex column was greater than 75%. On the other hand, gel filtration analysis of active renin revealed an elution pattern of two separate peaks corresponding to the molecular weight of 60,000 and 40,000 respectively (Figure 6A), as estimated in reference to internal molecular weight standards (14C-labeled bovine serum albumin and ovalbumin). The SDS-PAGE of inactive renin in the presence of 2-mercaptoethanol followed by Western blotting showed a single immunoreactive renin band with a molecular weight of 48,000 (Figure 7, Lane 3). On activation of inactive renin by trypsin, (Figure 4, open circles), which was co-eluted in the trypsin-activatable renin fractions (closed circles), was completely removed by a passage through an Affi-Gel Blue column, as shown in Figure 5. Fractions that were eluted with 0.5 M NaCl from this column did not show renin activity beyond the control level (Figure 5), but the trypsin treatment of the fractions resulted in extensive activation, which indicates the presence of a completely inactive renin in these fractions. These fractions were pooled and used as inactive renin in subsequent studies. Active renin obtained from the pepstatin-Sepharose column (second renin peak in Figure 3) was applied to the anti-renin IgG-Sepharose column to obtain a further purified active renin (not shown) and used as active renin. The results of the purification of inactive renin from the kidney are summarized in Table 1. The IgG-Sepharose chromatography was the most important step in this partial purification procedure, which accomplished a 900-fold purification in a single step. The final product of this partial purification work was estimated to be approximately 7% pure by comparing its potential specific activity with that of pure rat renin.18

Table 1. Partial Purification of Inactive Renin from Rat Kidney

<table>
<thead>
<tr>
<th>Step</th>
<th>Total protein (mg)</th>
<th>Specific activity</th>
<th>Purification</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>40,000</td>
<td>0.33</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>DEAE batch†</td>
<td>15,000</td>
<td>0.50</td>
<td>1.8</td>
<td>57</td>
</tr>
<tr>
<td>Pepstatin-Sepharose</td>
<td>580</td>
<td>8.0</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>IgG-Sepharose</td>
<td>0.500</td>
<td>7700</td>
<td>23,300</td>
<td>29</td>
</tr>
<tr>
<td>Affi-Gel Blue</td>
<td>0.110</td>
<td>8300</td>
<td>24,200</td>
<td>6.7</td>
</tr>
</tbody>
</table>

*Starting from 950 g of rat kidneys.
†Per microgram of angiotensin I per hour per milligram of protein.
‡Diethylaminoethyl cellulose.

Figure 5. Affinity chromatography of inactive renin fractions obtained from IgG-Sepharose on an Affi-Gel Blue column. The column was eluted with 0.02 M phosphate buffer, pH 6.5, containing 1 mM EDTA (first arrow), and then with 0.5 M NaCl in the same buffer (second arrow). Renin activity (—) was determined before (○) and after (●) trypsin activation. (—) = absorbance at 280 nm; angio = angiotensin I; the bracket indicates fractions used for the next step of purification.

Figure 6. Sephadex G-100 chromatography of active and inactive renin. A. Active renin obtained from the pepstatin-gel-bound fractions (second renin peak in Figure 4) followed by IgG-Sepharose. B. Inactive renin obtained from the Affi-Gel Blue column (under the bracket in Figure 5). ○ = renin activity before activation by trypsin; ● = renin activity after activation; angio = angiotensin I; Vr = elution volume; Vv = void volume. Arrows indicate the elution positions of the internal molecular weight standards. 14C-labeled bovine serum albumin and ovalbumin.
the immunoreactive renin band moved to a position corresponding to 39,000, as shown in Lane 4 in Figure 7. Partially or completely purified active renin had a molecular weight of 37,000 (Figure 7, Lanes 8 and 9). The partially purified, active high-molecular-weight renin obtained by gel filtration (with an apparent molecular weight of 60,000 by gel filtration; Figure 6A) exhibited a similar molecular weight of 37,000 (Figure 7, Lane 6). The pass-through fractions from pepstatin-Sepharose were a mixture of 48,000- and 37,000-dalton proteins (Figure 7, Lane 7).

Discussion

Due to exceedingly small quantities and instability of renin and inactive renin, studies on their molecular properties have encountered great difficulties. Characteristic selectivity and high affinity of specific antibodies seem to make immunochemical methods attractive tools to cope with these problems. In the present studies we have devised several immunochemical approaches for the characterization of inactive renin in rat kidney, which has long eluded conventional biochemical approaches. Usefulness of antibodies for the identification of renin has been amply demonstrated. The appearance of inactive renin in the plasma of totally nephrectomized human subjects suggested possible extrarenal sources of inactive renin; however, recent studies have demonstrated the presence of inactive renin in human kidney. The absence of inactive renin in kidneys of various nonprimate mammals gave the impression that these species do not store inactive renin in the kidney. Recent identification of inactive renin in hog kidney by Takii and Inagami, however, suggests the synthesis and storage of inactive renin in the kidney of this species. Identification of inactive renin in rat kidney by its isolation has been even more difficult. Results of the present study indicate the presence of inactive renin in the rat kidney. This finding is compatible with the observation of inactive renin in rat plasma by Barrett and co-workers and suggests the kidney as a source of inactive renin in plasma. Difficulties encountered in the identification of inactive renin in the kidney seem to be partially caused by the activation of inactive renin by a variety of proteases present at high concentrations in the kidney. The application of immunoaffinity chromatography permitted isolation and stabilization of inactive renin.

Whether the inactive renin is a simple polypeptide precursor of a zymogen type or a renin-inhibitor complex has been difficult to determine. It was only after...
the complete purification of inactive renin from hog kidney that definitive evidence for the single polypeptide zymogen was obtained. In view of the minute quantity and rapid activation by proteases, such a purification was exceedingly difficult. In the present study the inactive renin prepared by affinity chromatographic steps was by no means homogeneous; however, use of specific antibodies to renin in the Western blotting method in combination with SDS-PAGE permitted us to demonstrate that inactive renin in rat kidney is a protein consisting of a single polypeptide chain with a molecular weight of 48,000 to 50,000.

Although the kidney seems to contain two species of active renin with molecular weights of 40,000 and 60,000, results of the SDS-PAGE reduced the molecular weight of the larger species to a lower value indistinguishable from the 37,000- to 40,000-dalton active renin. The 60,000-dalton active renin seems to be a complex of the 40,000-dalton renin and a binding protein — as suggested by Inagami and Murakami and Funakawa and colleagues for pig and dog kidneys respectively — because it was prepared in the presence of sodium tetrathionate under the condition that was shown to form renin-binding protein complex.

These observations support the concept that the inactive 48,000- to 50,000-dalton renin is a zymogen and is converted to 37,000- to 40,000-dalton active renin by limited proteolysis. Active renin purified from rat kidneys was shown to have a molecular weight in the vicinity of 37,000 to 40,000, which is in agreement with the 37,000-dalton band of the active renin obtained in the present studies.

The molecular weight of rat kidney inactive renin (48,000–50,000) estimated by SDS-PAGE and Western blot is in general agreement with the molecular weight (50,000) of the translation product of the mouse kidney renin messenger ribonucleic acid. The size is somewhat larger than the prorenin derived from mouse submandibular gland messenger ribonucleic acid (45,000). One of the reasons for the difference may be due to the absence of carbohydrates in the submandibular gland enzyme or in the in vitro translate of messenger ribonucleic acid.

With the currently available antibodies, 100 pg of rat renin is detectable by the direct radioimmunoassay method. As the antibodies used in this study specifically react with renin of the rat, hog, and mouse in exclusion of human renin or rat cathepsin D, the antibody should be useful in distinguishing the angiotensin-forming activity of renin in tissue extracts from the similar but nonspecific activity of cathepsin D, which is present in large quantities in many organs. The specificity of this antibody was also suggested by exclusive immunohistochemical staining of juxtaglomerular cells with all other cells remaining intact in rat kidney sections. The anti-renin antibody does not appear to distinguish active renin from inactive zymogen.

Addendum

While this manuscript was in the process of being reviewed Pratt and co-workers and Catanzarro and associates published reports that support the thesis that a single polypeptide renin precursor produces renin by limited proteolysis and thus can be considered as renin zymogen.

Acknowledgment

The authors are greatly indebted to Mr. E. Price, Jr., for his skillful assistance, to Dr. R. J. Workman for a generous gift of goat anti-rabbit IgG, and to Dr. F. Chytil for his kind gift of pure tetanus toxoid.

References

22. Yokosawa N, Takahashi N, Inagami T, Page D. Isolation of...
completely inactive prorenin and its activation by kallikrein. Biochim Biophys Acta 1979;569:211–219
Application of immunochemical methods to the identification and characterization of rat kidney inactive renin.
Y Takii, A F Figueiredo and T Inagami

Hypertension. 1985;7:236-243
doi: 10.1161/01.HYP.7.2.236
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1985 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/7/2/236