Antihypertensive and Metabolic Effects of
Diltiazem and Nifedipine

KARL-LUDWIG SCHULTE, WOLFGANG A. MEYER-SABELLEK, ANGELIKA HAERTENBERGER,
HANS-MICHAEL THIEDE, LOTTHAR ROECKER, ARMIN DISTLER, AND REINHARD GOTZEN

SUMMARY The antihypertensive effect of diltiazem (180–270 mg/day) and nifedipine (40–60
mg/day) in slow-release forms was assessed over 8 weeks in a double-blind parallel study in 40 subjects
with essential hypertension at rest and during exercise. Blood pressure was comparably reduced in
both groups at rest as well as during exercise. The responder rates (≥10% reduction in diastolic blood
pressure) after 8 weeks of therapy were 53% at rest and 75% during exercise in the diltiazem group
and 78% and 50%, respectively, in the nifedipine group. Diltiazem decreased heart rate by 8%
(p<0.01), while nifedipine did not affect it. As a consequence, myocardial oxygen consumption, as
judged by the pressure-rate product, was reduced by diltiazem. Resting plasma norepinephrine levels
were increased significantly after 8 weeks of diltiazem therapy. Plasma epinephrine, renin, aldoste-
rone, glucose, insulin, and lactate and routine laboratory parameters were unchanged at the end of the
study. No significant changes in total cholesterol and triglyceride levels were observed after 8 weeks.
Whereas therapy with diltiazem resulted in an 8% fall in low density lipoprotein cholesterol after 8
weeks (p<0.05), nifedipine induced a drop in very low density lipoprotein cholesterol (p<0.05) after
8 weeks of therapy. We conclude that both diltiazem and nifedipine are effective antihypertensive
agents lacking undesirable metabolic side effects. Diltiazem, however, had the advantage of lowering
heart rate and myocardial oxygen consumption. (Hypertension 8: 859–865, 1986)

KEY WORDS diltiazem • nifedipine • blood pressure • exercise • plasma
catecholamines • plasma renin activity • carbohydrate metabolism • serum lipoproteins

A

n elevated peripheral vascular resistance is the
hallmark of chronic essential hypertension. Therefore, the use of drugs with a direct dilat-
ing effect on the arterial wall is a logical treatment
approach. As demonstrated more than 15 years ago by
Bender1 and Brittinger et al., calcium entry blockers
have an antihypertensive effect. All calcium entry
blockers decrease the influx of extracellular Ca2+ and
promote systemic vasodilation. The effects on myo-
cardium, cardiac cells, and vascular smooth muscle
differ depending on the drug used. While verapamil
and diltiazem act on myocardium, pacemaker cells,
and vascular smooth muscle, nifedipine and its deriv-
atives act mostly at the vascular site rather than on the
cardiac pacemaker.5,7

Recent reports have dealt with the antihypertensive
effect of calcium entry blockers in patients with mild to
moderate essential hypertension. The effects of
calcium entry blockers on catecholamines, plasma
renin, aldosterone, lipoproteins, and carbohydrate
metabolism have also been examined, but only a few studies comparing different calcium entry
blockers have been performed during chronic
therapy.6,7

The aim of our study was to evaluate the effect of the
calcium entry blockers diltiazem and nifedipine in
slow-release forms on blood pressure and heart rate at
rest and during exercise as well as on plasma renin
activity, aldosterone, catecholamines, serum lipopro-
teins, and carbohydrate metabolism in essential hyper-
tension during 2 months of treatment.

Subjects and Methods

The study group comprised 40 subjects, 12 women
and 28 men, 18 to 55 (mean, 52) years of age, who
gave informed consent (Table 1). All subjects had
grade I to II essential hypertension according to World
Results

Both groups were comparable with respect to age, Broca index, blood pressure, and heart rate (see Table 1; Table 2). There was no significant weight change during therapy.

Therapy with diltiazem and nifedipine resulted in a significant and almost identical reduction in systolic and diastolic blood pressure during supine rest ($p<0.001$; Figure 1) and during exercise ($p<0.001$ vs $p<0.01$; Figure 2; see Table 2). No postural hypotension occurred. The decrease in diastolic blood pressure at rest induced by both calcium entry blockers was significantly more pronounced after 8 weeks of therapy ($p<0.05$) than after 4 weeks. Fifteen patients receiving diltiazem and 14 receiving nifedipine required dose adjustments, however, increasing the doses by half did not cause any further decrease in blood pressure. The overall responder rates ($\geq 10\%$ reduction in diastolic blood pressure) after 8 weeks of treatment were comparable for both groups: in the supine position, 53% receiving diltiazem and 78% receiving nifedipine; in the standing position, 63% and 66%, respectively, and during exercise, 75% and 50%, respectively. The differences between groups were not significant. There was no significant correlation between pretreatment blood pressure and percentage fall in blood pressure, regardless of whether the two groups were evaluated separately or together.

Treatment with diltiazem resulted in significantly ($p<0.01$) decreased heart rates both at rest and during exercise (8% reduction) after 8 weeks of therapy (Figure 3; see Table 2). Heart rate was not significantly changed in the nifedipine group. Comparison of the groups showed a significant difference ($p<0.01$).

The two drugs had significantly different effects ($p<0.05$) on the pressure-rate product (systolic blood pressure $\times$ heart rate) as an indirect index of myocardial oxygen consumption (see Table 2). There was a distinctly greater decrease with diltiazem after 8 weeks of therapy: by 20% ($p<0.001$) at rest in the supine position and by 15% ($p<0.001$) during exercise. The pressure-rate product was not changed significantly in the nifedipine group.

Only diltiazem produced an increase (82% at rest) in plasma norepinephrine after 8 weeks of treatment ($p<0.01$; Table 3). However, the difference between...
<table>
<thead>
<tr>
<th>Variable</th>
<th>Diltiazem (n = 19)</th>
<th>Nifedipine (n = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretreatment</td>
<td>4 wk</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supine (5 min)</td>
<td>168 ± 4</td>
<td>152 ± 5*</td>
</tr>
<tr>
<td>Standing (2 min)</td>
<td>167 ± 4</td>
<td>152 ± 5*</td>
</tr>
<tr>
<td>Exercise (100 W)</td>
<td>233 ± 6</td>
<td>213 ± 7†</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supine (5 min)</td>
<td>111 ± 3</td>
<td>102 ± 3†</td>
</tr>
<tr>
<td>Standing (2 min)</td>
<td>116 ± 2</td>
<td>102 ± 3†</td>
</tr>
<tr>
<td>Exercise (100 W)</td>
<td>126 ± 4</td>
<td>113 ± 5†</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supine (5 min)</td>
<td>72 ± 2</td>
<td>69 ± 3</td>
</tr>
<tr>
<td>Standing (2 min)</td>
<td>78 ± 2</td>
<td>75 ± 4</td>
</tr>
<tr>
<td>Exercise (100 W)</td>
<td>129 ± 2</td>
<td>119 ± 3*</td>
</tr>
<tr>
<td>Pressure-rate product (mm Hg/min x 10³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supine (5 min)</td>
<td>12.1 ± 0.5</td>
<td>10.6 ± 0.6*</td>
</tr>
<tr>
<td>Standing (2 min)</td>
<td>13 ± 0.5</td>
<td>11.4 ± 0.7†</td>
</tr>
<tr>
<td>Exercise (100 W)</td>
<td>30 ± 1.1</td>
<td>25.5 ± 1.2†</td>
</tr>
</tbody>
</table>

Values are means ± SEM.

*p < 0.01, †p < 0.001, §p < 0.05, compared with pretreatment values; ||p < 0.01, ||p < 0.05, |||p < 0.001, compared with values for diltiazem.

Therapy did not significantly alter glucose and insulin levels either at rest or during exercise (see Table 3).

Nifedipine induced a 33% drop in very low density lipoprotein cholesterol after 8 weeks of treatment (p < 0.05). Divergent (p < 0.05) alterations after 8 weeks were only seen in low density lipoprotein cholesterol, which decreased after 8 weeks of diltiazem.
Diastolic arterial blood pressure in older and low renin patients with essential hypertension. MacGregor et al. pronounced verapamil-induced reduction of mean and consumption, 27 was significantly reduced by diltiazem only through a decrease in heart rate. Comparable results have been reported by Klein et al. 10

Adverse reactions were reported by 10 subjects receiving diltiazem and 11 receiving nifedipine (Table 4). These side effects disappeared after 1 to 2 weeks of therapy. One subject receiving diltiazem and two receiving nifedipine had to be dropped from the study because of side effects (agitation with diltiazem, flush and palpitation with nifedipine) during the first treatment period.

Discussion

Therapy with the calcium entry blockers diltiazem and nifedipine in slow-release forms resulted in a marked blood pressure reduction at rest and during exercise in our subjects with mild to moderate essential hypertension. The decrease in diastolic blood pressure at rest was significantly more pronounced after 8 weeks than after 4 weeks of treatment with both kinds of drugs. A similar time-dependent effect has also been observed with nifedipine and verapamil. 28

Although nifedipine did not significantly change the heart rate after 8 weeks of therapy, diltiazem led to a significant reduction at rest and during ergometric work load. This decrease may reflect a negative chronotropic effect of diltiazem by direct action on the sinus node. 29 Similarly, the pressure-rate product, a well-documented parameter of myocardial oxygen consumption, 24 was significantly reduced by diltiazem only through a decrease in heart rate. Comparable results have been reported by Klein et al. 10

Bühler et al. 30 described a significantly more pronounced verapamil-induced reduction of mean and diastolic arterial blood pressure in older and low renin patients with essential hypertension. MacGregor et al. 17 were not able to confirm such a correlation in a short-term study with nifedipine in young and old normotensive and hypertensive subjects. Hallin et al., 31 who treated mildly to moderately hypertensive patients with nifedipine for 24 weeks, were likewise unable to find a greater blood pressure reduction in older patients. In a 6-week study of nifedipine and verapamil, Midtbø et al. 28 found no relation between blood pressure reduction and age. In our study as well, no correlation was detected between age or plasma renin activity before therapy and arterial blood pressure reduction.

A number of the studies reported that the higher the initial blood pressure values, the greater the mean 17, 30 and diastolic 30 blood pressure decreases detected. This could not be confirmed either in the study of Midtbø et al. 28 or in our own. As to correlations between pretreatment blood pressure and decrease of blood pressure during therapy, Gill et al. 32 have shown that such positive correlations are mathematically inevitable and may thus not be valid.

The treatment was well tolerated. A total of 21 subjects in both groups complained of side effects, which disappeared in most instances within 1 or 2 weeks, as reported by others. 18, 31, 33 Side effects related to peripheral vasodilation (e.g., flush and palpitations) were observed more frequently during nifedipine therapy, resulting in two dropouts (see Table 4).

Resting norepinephrine level increased significantly with diltiazem treatment after 8 weeks, but the difference between the groups was not significant. Inouye et al. 15 reported a similar increase of norepinephrine with diltiazem treatment that they attributed to the inhibitory effect of diltiazem on the postsynaptic α-adrenergic receptors. 34, 35 However, Klein et al. 10 found an increase in norepinephrine during nifedipine, but not diltiazem treatment, which they ascribed to a decrease in systemic vascular resistance. Lederballe-Pedersen...
et al. did not confirm such an increase during chronic therapy in contrast to their finding during acute therapy with nifedipine.

There was no change in plasma renin activity or aldosterone after 8 weeks of treatment with either drug. These findings are partially in contrast to acute studies demonstrating a rise in plasma renin but not in aldosterone. As with renin and aldosterone, there were no significant changes in sympathetic tone as judged from the plasma norepinephrine concentration. This finding was also demonstrated during long-term therapy with nifedipine.

Several experimental studies and case reports have described the occurrence of a reversible hyperglycemia with diminished insulin release during nifedipine therapy. The increased plasma glucose concentrations that were associated with the administration of nifedipine returned to normal after withdrawal of this drug. In long-term studies, the longest extending over 5 years, no change in basal or glucose-stimulated carbohydrate metabolism was observed in nondiabetic patients treated with nifedipine, or verapamil, or diltiazem or in diabetic subjects treated with nitrendipine, nifedipine, or diltiazem. We were also unable to find any significant changes in serum glucose or insulin; however, patients with diabetes were not included in our study.

Total serum cholesterol and triglyceride levels remained stable in patients treated with nifedipine, nitrendipine, or diltiazem. There was a decrease in serum triglyceride levels in a large cross-sectional study of patients treated with nifedipine, nitrendipine, or diltiazem. The decrease in serum triglycerides was more pronounced in patients treated with diltiazem than with nifedipine or nitrendipine. The decrease in serum triglycerides in patients treated with nifedipine or nitrendipine was more pronounced in patients treated with nifedipine than with nitrendipine. The decrease in serum triglycerides in patients treated with diltiazem was more pronounced in patients treated with diltiazem than with nifedipine or nitrendipine.

**TABLE 3. Hormonal and Laboratory Parameters of Subjects Before and After 4 and 8 Weeks of Treatment with Diltiazem and Nifedipine at Rest and During Exercise**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Rest (pg/ml)</th>
<th>Exercise (pg/ml)</th>
<th>Rest (ng ANG I/ml/hr)</th>
<th>Exercise (ng ANG I/ml/hr)</th>
<th>Rest (pg/ml)</th>
<th>Exercise (pg/ml)</th>
<th>Rest (mg/dl)</th>
<th>Exercise (mg/dl)</th>
<th>Rest (mU/L)</th>
<th>Exercise (mU/L)</th>
<th>Rest (mmol/L)</th>
<th>Exercise (mmol/L)</th>
<th>Rest (ng/ml)</th>
<th>Exercise (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diltiazem</td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>300±44</td>
<td>468±40*</td>
<td>300±44</td>
<td>468±40</td>
<td>300±44</td>
<td>468±40*</td>
<td>300±44</td>
<td>468±40*</td>
<td>300±44</td>
<td>468±40*</td>
<td>300±44</td>
<td>468±40*</td>
<td>300±44</td>
<td>468±40*</td>
</tr>
<tr>
<td>n = 19</td>
<td></td>
</tr>
<tr>
<td>Nifedipine</td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>363±64</td>
<td>528±48</td>
</tr>
<tr>
<td>4 wk</td>
<td></td>
</tr>
<tr>
<td>8 wk</td>
<td>420±54</td>
<td>500±48</td>
</tr>
</tbody>
</table>

Values are means ± SEM.

**TABLE 4. Rate of Side Effects in 40 Subjects Treated with Calcium Entry Blockers**

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Diltiazem (n = 20)</th>
<th>Nifedipine (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Palpitation</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Headache</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Flush</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>Leg edema</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Agitation</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
References

2. Koch-Weser J. Vasodilating drugs in the treatment of hyper-
tension. Arch Intern Med 1974;133:1017-1027
3. Bender F. Die medikamentöse Behandlung von Herzrhyth-
musstörungen. Therapeutische Welche 1968;18:1803-1808
isch-experimentelle Untersuchungen über die blutdrucksen-
95:1871-1877
5. Henry PD. Comparative pharmacology of calcium antagonists,
nifedipine, verapamil and diltiazem. Am J Cardiol 1980;46:
1047-1058
6. Chaffman M, Brogden RN. Diltiazem: a review of its pharma-
cological properties and therapeutic efficacy. Drugs 1985;29:
378-454
7. Sorkin EM, Clissold SP, Brogden RN. Nifedipine: a review of
its pharmacodynamic and pharmacokinetic properties, and
therapeutic efficacy, in ischaemic heart disease, hypertension
8. Lederballe-Pedersen O, Mikkelsen E, Christensen NJ, Kor-
necup HJ, Pedersen EB. Effect of nifedipine on plasma renin,
aldosterone and catecholamines in arterial hypertension. Eur J
9. Aoki K, Sato K, Kawaguchi Y, Yamamoto M. Acute and long-
term hypotensive effects and plasma concentrations of nifedi-
pine in patients with essential hypertension. Eur J Clin Pharma-
col 1982;23:197-201
antagonists in the treatment of essential hypertension. Circ Res
1983;52(suppl I):I-174-I-181
11. Olivari MT, Bartorelli C, Polese A, Fiorentini C, Moruzzi P,
Guazzi MD. Treatment of hypertension with nifedipine, a
12. Spävack C, Ockern S, Frishman W. Calcium antagonists: clini-
cal use in the treatment of systemic hypertension. Drugs
1983;25:154-177
13. Hiramaatsu K, Yamagishi F, Kubota T, Yamada T. Acute ef-
effects of the calcium antagonist, nifedipine, on blood pressure
pulse rate, and the renin-angiotensin-aldosterone system in
patients with essential hypertension. Am Heart J 1982;
104:13461350
14. Lewis GRJ, Stewart DJ, Lewis BM, Bones PJ, Morley KD,
Janus ED. The antihypertensive effect of oral verapamil: acute
and long term administrations and its effects on the high-densi-
ty lipoprotein cholesterol in plasma. In: Zelles A, Krämer DW,
ed. Calcium antagonism in cardiovascular therapy. Amsterdam:
Excerpta Medica, 1981:270-277
15. Trost BN, Weidmann P. Effects of nisoldipine and other cal-

cium antagonists on glucose metabolism in man. J Cardiovasc
Pharmacol 1984;6:986-990
16. Wada S, Nakayama M, Masaki K. Effects of diltiazem hydro-
chloride on serum lipids: comparison with beta-blockers. Clin
Ther 1982;5:163-173
17. MacGregor GA, Rotellar C, Markandu ND, Smith SU, Sagg-
nella GA. The acute response to nifedipine is related to pre-
treatment blood pressure. Postgrad Med J 1983;59(suppl
2):91-94
18. Inouye IK, Massie BM, Benowitz N, Simpson P, Loge D.
Antihypertensive therapy with diltiazem and comparison with
hydralazine. J Cardiol 1984;53:1588-1592
19. Franz I-W. Differential antihypertensive effect of acebutolol
and hydralazine/amiodarone hydrochloride combination on
elevated exercise blood pressure in hypertensive patients.
Am J Cardiol 1980;46:301-305
20. Chaffman M, Brogden RN. Conjoint radiomyuolumetric mea-
surements of catecholamines, their catechol metabolites and DOPA
in biological samples. Naunyn Schmiedebergs Arch Pharmacol
1981;318:19-28
21. Oelkers W, Schöneshofer M, Blämel A. Effects of progester-
one and four synthetic progestagens on sodium balance and the
renin-aldosterone system in man. J Clin Endocrinol Metab
1974;39:882-890
22. Röschlau P, Bernt E, Gruber W. Enzymatische Bestimmung
1974;12:403-407
23. Eggstein M, Kreutz FH. Eine neue Bestimmung der Neutral-
1966;44:262-273
24. Hatch A, Hjerm L, Holme I, Leren P. Serum triglycerides and
serum uric acid in untreated and thiazide-treated patients with
New York: John Wiley, 1973
103:22-31
27. Mittwoh K, Hals O, van der Mcr J. Verapamil compared with
nifedipine in the treatment of essential hypertension. J Cardio-


HYPERTENSION VOL 8, NO 10, OCTOBER 1986

vasc Pharmacol 1982;4:S363-S368
28. Kawai C, Konishi T, Matsuyama E. Comparative effects of
calcium antagonists, diltiazem, verapamil and nifdefi-
pine, on the sinoatrial and ativoventricular nodes: experimental
29. Bühler FR, Hulten UL, Kjowski W, Bolli P. Greater antihy-
pertensive efficacy of the calcium channel inhibitor verapamil
30. Hallin L, Andreu L, Hanson L. Controlled trial of nifedipine
and bendroflumethiazide in hypertension. J Cardiovasc
Pharmacol 1983;5:1083—1085
initial blood pressure and its fall with treatment. Lancet
1985;1:567-569
32. Land-Johanssen P, Omvik P. Haemodynamic effects of nifedi-
pine in essential hypertension at rest and during exercise. J
Hypertens 1983;1:159—163
33. van Zwieten PA, van Meel JCA, Timmermans PBMWM. Foundations of calcium entry blockers: interaction with vas-
cular alpha-adrenoceptors. Hypertension 1983;5(suppl I):I-
117
34. Schulte K-L, Laber E, Meyer-Sabellek WA, Distler A, Gotzen
Antihypertensive and metabolic effects of diltiazem and nifedipine.
K L Schulte, W A Meyer-Sablek, A Haertenberger, H M Thiede, L Roecker, A Distler and R Gotzen

*Hypertension*. 1986;8:859-865
doi: 10.1161/01.HYP.8.10.859

*Hypertension* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1986 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/8/10/859

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Hypertension* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Hypertension* is online at:
http://hyper.ahajournals.org//subscriptions/