Unusual Association of Hyperkalemia and Hypertension

Esa Soppi, Jorma Viikari, Pentti Seppälä, Aapo Lehtonen, Riitta Saarinen, and Seppo Miilunpalo

SUMMARY We report an unusual association of hyperkalemia, mild hyperchloremic acidosis, and hypertension in a young woman. Pseudohyperkalemia, Addison’s disease, renal insufficiency, classical hyperreninemic hypoaldosteronism, isolated hypoaldosteronism, and iatrogenic causes were excluded. The patient’s findings were compatible with a rare syndrome designated as type II pseudohypoaldosteronism, Gordon’s syndrome. (Hypertension 8: 174–177, 1986)

KEY WORDS · hyperkalemia · hypertension · pseudohypoaldosteronism · Gordon’s syndrome

THE primary investigation of the hypertensive patient includes the determination of serum electrolyte levels in expectation that hypopotassemia will reveal any instances of the rare but curable condition, primary hyperaldosteronism. Persistent hypopotassemia accompanied by hypertension in the absence of oliguria or severe renal failure is an unusual biochemical finding. When pseudohyperkalemia, Addison’s disease, hyporeninemic hypoaldosteronism, isolated hypoaldosteronism, and iatrogenic causes are excluded, a real association of hyperkalemia and hypertension should be considered.

We describe a patient with persistent hyperkalemia, hyperchloremic acidosis, and hypertension whose findings are compatible with a syndrome designated as type II pseudohypoaldosteronism (Gordon’s syndrome). In a review of the medical literature, we could find only 11 previous reports of type II pseudohypoaldosteronism (Table 1).

Case Report
A girl born in 1964 was admitted to the department of pediatrics of a local university hospital in 1979 because of hypertension (150–160/110–125 mm Hg). Subsequent examinations were conducted in the department of medicine. She had a family history of hypertension (father, father’s sister, and paternal grandfather). Her mother had had hypertension and proteinuria during pregnancy. Her sister had been observed for borderline blood pressure values. Childhood diseases included chicken pox, varicella, and measles.

Table 1. Published Reports of Cases Compatible with Type II Pseudohypoaldosteronism

<table>
<thead>
<tr>
<th>Study</th>
<th>Age (yr)/ sex</th>
<th>BP (mmHg)</th>
<th>GFR (ml/sec/ 1.73 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paver and Pauline, 1964</td>
<td>21/M</td>
<td>180/120</td>
<td>1.9</td>
</tr>
<tr>
<td>Stokes et al., 1968</td>
<td>10/F</td>
<td>160/110</td>
<td>1.7</td>
</tr>
<tr>
<td>Arnold and Healy, 1969</td>
<td>11/M</td>
<td>110/70</td>
<td>0.6</td>
</tr>
<tr>
<td>Gordon et al., 1970</td>
<td>9/M</td>
<td>105/65</td>
<td>1.8</td>
</tr>
<tr>
<td>Spitzer et al., 1973</td>
<td>52/M</td>
<td>200/100</td>
<td>2.2</td>
</tr>
<tr>
<td>Weinstein et al., 1974</td>
<td>48/M</td>
<td>150/100</td>
<td>1.9</td>
</tr>
<tr>
<td>Bratthar et al., 1978</td>
<td>17/F</td>
<td>160/105</td>
<td>-</td>
</tr>
<tr>
<td>Farfel et al., 1979</td>
<td>33/M</td>
<td>200/110</td>
<td>1.7</td>
</tr>
<tr>
<td>Grekin et al., 1979</td>
<td>9/F</td>
<td>120/90</td>
<td>-</td>
</tr>
<tr>
<td>Lee et al., 1979</td>
<td>23/M</td>
<td>160/106</td>
<td>2.1</td>
</tr>
<tr>
<td>Lee and Morgan, 1980</td>
<td>13/F</td>
<td>240/140</td>
<td>-</td>
</tr>
<tr>
<td>Schambelan et al., 1981</td>
<td>20/F</td>
<td>180/106</td>
<td>1.6</td>
</tr>
</tbody>
</table>

BP = blood pressure; GFR = glomerular filtration rate; Aldo = aldosterone; PRA = plasma renin activity; ANG I = angiotensin I; P_aldo = plasma aldosterone; UD = undetectable. A dash indicates data not available.

*During diazide therapy.
HYPERKALEMIA AND HYPERTENSION/Soppi et al.

Clinical Examination

On first admission the patient was slightly overweight (height, 156 cm; weight, 60 kg). Blood pressures of 144 to 190/110 to 125 mm Hg were obtained on several occasions, and no differences between measurements of upper and lower extremities were recorded. Results of the following blood tests were repeated-

- Blood pressure measurements of upper and lower extremities were recorded.
- The 24-hour urinary excretion of angiotensin I/ml/hr (0.1 to 1.0 ng of angiotensin I/ml/hr (normal, 0.9-5.0 ng angiotensin I/ml/hr)).
- Plasma renin activity from renal veins was measured.

Table 2. Collected Simultaneous Plasma and Urinary Potassium and Sodium Values of a Patient with Type II Pseudohypoaldosteronism in Free-Living Conditions Without Any Medication

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma (mM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>138</td>
</tr>
<tr>
<td>Potassium</td>
<td>6.1</td>
<td>6.0</td>
<td>5.9</td>
<td>5.7</td>
<td>5.7</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Urinary (mM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium*</td>
<td>56</td>
<td>152</td>
<td>125</td>
<td>182</td>
<td>83</td>
<td>144</td>
<td>134</td>
</tr>
<tr>
<td>Potassium†</td>
<td>35</td>
<td>98</td>
<td>51</td>
<td>104</td>
<td>44</td>
<td>67</td>
<td>65</td>
</tr>
</tbody>
</table>

*Normal values, 170 to 260 mM; †Normal values, 60 to 90 mM.

- Plasma potassium values were 5.2 to 6.4 mM, and serum magnesium (0.75 mM), and serum creatinine level was 5.1 to 6.2 mM, and blood pressure was 130 to 180/80 to 108 mm Hg. First-degree hypertension-related changes were observed in ocular fundi vessels.
- The follow-up (1979–1982) the patient’s physical status remained normal. Plasma potassium level was 5.1 to 6.2 mM, and blood pressure was 130 to 180/80 to 108 mm Hg.
- The pH of urine varied between 6.0 and 7.0 (dipstick).
- The patient did not use any medication during the follow-up (1979–1982).
sions after overnight recumbency, the plasma aldosterone level was 575 and 900 pmol (20.7 and 32.4 ng/dl) and the daily urine aldosterone was 16.9 nmol (6.1 μg). The corresponding plasma renin activity was low (0.4 and 0.2 ng angiotensin I/ml/hr), and plasma potassium level was elevated (5.3 and 6.0 mM). The 4-hour upright position had no effect on plasma aldosterone level (740 and 350 μM; 26.7 and 12.6 ng/dl) or on plasma renin activity (0.6 and 0.7 ng angiotensin I/ml/hr), respectively.

Potassium excretion was not correlated with plasma level in free-living conditions (see Table 2). Serum angiotensin converting enzyme activity was 32 U/L (normal, 20–80 U/L). Fractionation bicarbonaturia was 96%, and potassium clearance was measured three times (5.4, 6.0, and 11.3 ml/min). The patient’s Na⁺-K⁺ pump activity and lithium countertransport of red blood cells were comparable to values found in normal subjects (Table 3).

Treatment

A search of the literature revealed that the patient’s findings were compatible with those of type II pseudohypoaldosteronism (see Table 1). Thereafter a regimen of hydrochlorothiazide (50 mg/day) was started, which normalized the blood pressure (to approximately 140/95 mm Hg), plasma potassium level (4.3–4.9 mM), plasma chloride level (104 mM), and acid-base balance. Plasma aldosterone concentration was 575 to 900 pmol before therapy and 470 pmol (16.9 ng/dl) during therapy. Cessation of the diuretic therapy resulted in elevated plasma potassium and blood pressure values on several occasions.

Discussion

The hyperkalemic syndromes occur in forms associated with normal or altered body loads of potassium. Of the disorders associated with normal body potassium levels, pseudohypoaldosteronism due to leukocytosis, thrombocytosis, hemolysis, and ischemic blood drawing as a test tube phenomenon were excluded in our patient. In addition, since the patient did not have tissue necrosis or diabetes and was not taking medication or salt substitutes or ingesting a low salt diet, the repeatedly elevated plasma potassium concentration reflected a real hyperkalemia. The patient did not have Addison’s disease or impaired renal function.

Hyperkalemia normally is prevented by the ability of the kidneys to excrete a normal potassium load. Our patient, however, was unable to increase the amount of potassium excreted when plasma potassium concentration was elevated (see Table 2). An association of hyperkalemia with acidosis focused our attention on type 4 renal tubular acidosis, since the pH of urine exceeded 6.0 on several occasions during acidosis. In spite of the presence of acidosis and hyperkalemia, however, the findings in our patient were not compatible with those of classical type 4 renal tubular acidosis (hyporeninemic hypoaldosteronism). Our patient had normal urinary aldosterone levels but supernormal plasma aldosterone levels and elevated plasma potassium levels. In addition, low values for potassium clearance were obtained in two out of three determinations. Taken together, these findings suggest that the patient’s kidneys were unable to excrete potassium adequately.

Thus, a diagnosis of pseudohypoaldosteronism was entertained. Classical pseudohypoaldosteronism (type 1 of infancy) is characterized by renal salt wasting and hypotension. A syndrome of hyperkalemia and acidosis unaccompanied by renal salt wasting and frequently associated with hypertension, as seen in our patient, has been designated type II pseudohypoaldosteronism, or Gordon’s syndrome.

In a review of the literature we found 11 reports of Gordon’s syndrome (see Table 1) as to the extent of acidosis, hyperkalemia, and levels of aldosterone.

Although our patient’s red blood cell Na⁺-K⁺ pump activity was unaffected by treatment and was comparable to that found in normal controls, pump activity is reportedly increased in essential, but not in secondary, hypertension. Grekin et al. have proposed that Gor-

<table>
<thead>
<tr>
<th>Na⁺-K⁺ pump activity</th>
<th>Before thiazide therapy</th>
<th>During thiazide therapy</th>
<th>Normal controls (n = 42)</th>
<th>Subjects with essential hypertension (n = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>87.6 ± 9.4</td>
<td>98.2 ± 13.6</td>
<td>93.7 ± 14.4</td>
<td>98.5 ± 13.6</td>
</tr>
<tr>
<td>Active</td>
<td>71.4 ± 6.7</td>
<td>67.4 ± 12.6</td>
<td>71.4 ± 9.4</td>
<td>72.0 ± 9.0</td>
</tr>
<tr>
<td>Maximal ouabain binding (pmol/10⁷ cells)</td>
<td>0.54 ± 0.11</td>
<td>0.51 ± 0.11</td>
<td>0.54 ± 0.11</td>
<td>0.50 ± 0.08</td>
</tr>
<tr>
<td>Lithium countertransport (mmol lithium/L red blood cells × hr)</td>
<td>0.23 ± 0.03</td>
<td>0.28 ± 0.04</td>
<td>0.31 ± 0.10</td>
<td>0.25 ± 0.11</td>
</tr>
</tbody>
</table>

Values are means ± SD.
don’s syndrome represents the manifestation of a deficiency of the hypothetical choriuretic hormone. Other workers have suggested that a defect of the distal nephron exists that increases the resorptive rate for chloride relative to sodium, which results in hyperchloremic, hyperkalemic acidosis and hypertension due to hyperkalemia. Consistent with the presence of such a chloride shunt, the administration of choriuretic diuretics corrected the hyperkalemia and acidosis in our patient and in previously reported patients.

References
Unusual association of hyperkalemia and hypertension.
E Soppi, J Viikari, P Seppälä, A Lehtonen, R Saarinen and S Miilunpalo

Hypertension. 1986;8:174-177
doi: 10.1161/01.HYP.8.2.174

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1986 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/8/2/174

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/