Effects of Calcium Infusion on Blood Pressure in Hypertensive and Normotensive Humans

David H. Ellison, Robert Shneidman, Cynthia Morris, and David A. McCarron

SUMMARY Disorders of calcium and parathyroid hormone homeostasis have been reported in subjects with essential hypertension. In many of these studies, dietary intakes of sodium and calcium were not carefully controlled. The present study was designed to compare calcium and parathyroid hormone homeostasis in normal and hypertensive subjects on controlled dietary sodium and calcium intakes and to examine the impact of dietary sodium loading on hemodynamic and metabolic responses to infused calcium. Seven subjects with essential hypertension and seven age-matched and sex-matched controls were studied while consuming a standard diet containing 600 mg of elemental calcium. Each subject was studied while consuming 10, 160, and 510 mEq of sodium per day, before, during, and after a 3-hour calcium infusion (3.75 mg/kg/hr). Before calcium infusion, hypertensive subjects had increased urinary cyclic adenosine 3',5'-monophosphate excretion independent of sodium intake (p < 0.05). Urinary potassium excretion was greater in normotensive than in hypertensive subjects (p = 0.002). At baseline, dietary sodium intake had no effect on systolic, diastolic, or mean arterial pressure. During calcium infusion, systolic pressure increased in both groups, whereas diastolic pressure increased only when dietary sodium content was high and mean arterial pressure increased only in hypertensive subjects (p = 0.007). Together, these data provide evidence for interactions between dietary sodium intake and the cardiovascular response to calcium. They confirm that hypertensive subjects exhibit enhanced parathyroid gland function even when dietary factors are controlled, and they suggest that these subjects are more sensitive to the cardiovascular effects of short-term calcium infusion. (Hypertension 8: 497–505, 1986)

Key Words • parathyroid hormone • blood pressure • cyclic adenosine monophosphate

Calcium metabolism may be abnormal in patients with essential hypertension and in several experimental models of the disease. Disturbances that have been described in humans include increased urinary calcium excretion,1,2 enhanced parathyroid gland activity,1,2 and reduced levels of serum ionized calcium.3,4 In several experimental models of hypertension, similar abnormalities have been identified,3,6 including increased rates of parathyroid hormone (PTH) secretion5,6 and alterations of membrane calcium sensitivity,7 perhaps secondary to disordered membrane calcium binding.8 Most clinical reports of disordered calcium homeostasis have neglected careful control of several important determinants of calcium metabolism. Dietary intake of calcium or sodium may influence renal excretion of the other ion6,9 and each may participate in blood pressure control, either directly or through their diverse interactions.9-11 Recent reports highlight the major effects of changes in dietary sodium chloride intake on renal calcium excretion9,11 and suggest that some sodium chloride-dependent effects may be mediated directly by changes in systemic calcium balance. The present experiments were designed to compare the hemodynamic and metabolic responses to short-term calcium infusion in normal subjects and in subjects with essential hypertension. Calcium infusion was performed while subjects consumed diets that differed in sodium content to investigate interactions between dietary sodium intake and the response to calcium.
Subjects and Methods

Seven subjects with essential hypertension and seven age-matched and sex-matched control subjects participated in the study. All subjects were white. Criteria for entry of hypertensive subjects included documented ambulatory blood pressures in excess of 140/90 mm Hg on at least three occasions and the absence of other chronic diseases requiring medical therapy. Hypertensive subjects had previously undergone specific investigations designed to rule out secondary causes of hypertension, and each carried the diagnosis of essential hypertension. At the time of entry into the study, 1) routine urinalysis results showed less than 1+ proteinuria and were negative for occult blood (Multistix, Ames, Elkhart, IN, USA) and 2) automated chemistry screen results (SMAC, Technicon, Tarrytown, NY, USA) showed normal serum potassium, creatinine, total calcium, and phosphorus levels. Table 1 compares characteristics of the two groups. Although hypertensive subjects tended to weigh more than control subjects, this difference was not significant (t = 1.16 by unpaired t test).

Most hypertensive subjects were taking oral antihypertensive medications before entry into the study. Medications were withdrawn approximately 2 weeks before the study began. Although at least 10 drug-free days were required before beginning the study, the possibility that some of the observed differences were due to residual drug effects cannot be excluded. A general outline of the experimental protocol is shown in Figure 1. The study was divided into three parts and lasted 13 days. On Day 1, the subject received dietary instruction and was given a dietary log book in which to record daily food consumption. The daily diet contained 10 mEq of sodium and approximately 600 mg of elemental calcium, a portion of which was administered as calcium carbonate. The subject consumed this diet throughout the study. A 24-hour urine sample was collected on the fifth day (Study Day 5) and analyzed for sodium, creatinine, and calcium. The subject entered the Clinical Research Center on Study Day 10 for Test Day 2. Following completion of the test day protocol, dietary sodium was increased to 510 mEq/day. On the twelfth day, a 24-hour urine sample was collected and analyzed for sodium, creatinine, and calcium.

The protocol during each of the 3 test days was identical. Two intravenous catheters were placed, one for infusions and one for drawing blood. An oral water load (750 ml) was administered to ensure adequate urine flow, and loading doses of p-aminohippurate (PAH), 6 mg/kg, and inulin, 50 mg/kg, were given intravenously during a 5-minute period. Following this loading dose, dextrose in water, 50 g/L, with PAH, 2 g/L, and inulin, 5 g/L, were infused at 250 ml/hour. After 45 minutes had elapsed to allow the attainment of steady state conditions, clearance measurements were begun. Urine samples were collected every 20 minutes, blood samples were obtained at the midpoint of each 20-minute cycle. This procedure provided a continuous series of 20-minute clearance periods. Blood pressure, pulse, and respiratory rate were measured every 20 minutes during the infusions. Two hours after clearance measurements had begun, an infusion of elemental calcium as gluconate was initiated at a rate of 3.75 mg/kg/hr and continued for 3 hours. At the end of this period, calcium was removed and inulin and PAH infusion continued for 2 more hours. Thus, clearances were measured continuously for 7 hours.

Blood pressures were measured by standard sphygmomanometry. Systolic pressure was defined as the

![Figure 1. Experimental protocol. Each subject consumed the same diet throughout the 13 study days. Sodium was supplemented in preweighed packages. On the test days, inulin and p-aminohippurate (PAH) clearance measurements were begun at 0915. CRC = Clinical Research Center.](image-url)

TABLE 1. Subject Characteristics at Time of Entry into Study

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hypertensive</th>
<th>Normotensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>4:3</td>
<td>4:3</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>42 ± 4.5</td>
<td>42 ± 4.5</td>
</tr>
<tr>
<td>Blood pressure (mm Hg)</td>
<td>156 ± 2.8</td>
<td>118 ± 4.2*</td>
</tr>
<tr>
<td>Systolic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diastolic</td>
<td>100 ± 3.5</td>
<td>72 ± 2.8*</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>80 ± 6.6</td>
<td>70 ± 4.8</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>1.0 ± 0.05</td>
<td>0.9 ± 0.07</td>
</tr>
</tbody>
</table>

Values are means ± SE.

*p < 0.001, compared with values in hypertensive subjects.
Effects of Dietary Sodium Content on Systolic, Diastolic, and Mean Arterial Pressure Response to Infused Calcium

<table>
<thead>
<tr>
<th>Variable</th>
<th>Low Na⁺ (10 mEq/day)</th>
<th>Medium Na⁺ (260 mEq/day)</th>
<th>High Na⁺ (510 mEq/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>Systolic BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>117±5.9</td>
<td>114±3.3</td>
<td>114±6.1</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>141±3.1</td>
<td>155±4.0</td>
<td>144±5.7</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>73±5.1</td>
<td>69±1.6</td>
<td>69±3.1</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>91±1.5</td>
<td>93±2.4</td>
<td>91±4.3</td>
</tr>
<tr>
<td>MAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>88±4.2</td>
<td>84±2.0</td>
<td>84±2.8</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>108±1.4</td>
<td>114±2.7</td>
<td>109±5.4</td>
</tr>
</tbody>
</table>

Values are means ± SE before (B), during (D), and after (A) calcium infusion. BP = blood pressure; MAP = mean arterial pressure.
action between diet and calcium infusion could not be shown to be different between groups (diet/time/group effect, \(p = 0.935 \) by ANOVA).

The effects of calcium infusion on MAP are shown in Table 2 and Figure 5. During the infusion of calcium in hypertensive subjects, MAP rose significantly and independently of dietary sodium intake, whereas in normal control subjects calcium infusion had no significant effect on MAP (group effect, \(p = 0.007 \) by ANOVA). Of further note is the temporal dissociation between blood pressure and serum calcium concentration. In the hypertensive subjects, MAP rose during calcium infusion as serum calcium levels increased but MAP remained elevated as serum calcium levels began to fall during the recovery period.

Inulin and PAH clearances and fractional excretion rates for sodium and potassium are shown in Table 3. Note that all fractional excretion rates were measured after the start of diuresis. Inulin clearance (overall mean, \(105 \pm 7.7 \) vs \(105 \pm 7.4 \) ml/min) and PAH clearance (overall mean, \(544 \pm 45.6 \) vs \(473 \pm 35.6 \) ml/min) were similar in normotensive and hypertensive subjects, respectively, and were not altered significantly by sodium intake. Although, as expected, fractional sodium excretion was influenced significantly by dietary sodium intake (diet effect, \(p < 0.001 \)), overall mean fractional sodium excretion was similar in normotensive and hypertensive subjects (2 \(\pm \) 0.4 vs 2 \(\pm \) 0.6%, respectively; group effect, \(p = 0.618 \)). Fractional potassium excretion, however, was significantly higher in normal than in hypertensive subjects (overall mean before calcium infusion, 21 \(\pm \) 0.3% vs 21 \(\pm \) 0.3%, respectively; group effect, \(p = 0.002 \)). Neither inulin nor PAH clearance was affected significantly by calcium infusion in either group. Increasing dietary sodium intake tended to increase PAH clear-
Figure 5. Effects of calcium infusion on mean arterial pressure (calculated as diastolic pressure + 1/3(systolic — diastolic pressure). Measurements were made immediately before, during (at 1, 2, and 3 hours), and 1 hour after calcium infusion. Statistics are shown in Table 2.

Discussion

The present study was designed to compare hemodynamic and metabolic responses to short-term calcium infusion in hypertensive and normotensive subjects and to assess the influence of dietary sodium intake on the response to administered calcium. The results show that subjects with essential hypertension excreted more urinary cAMP than did normal subjects even when dietary sodium and calcium intake were controlled and that dietary sodium chloride intake altered cAMP excretion. Fractional excretion of calcium was increased significantly during the infusion (time effect, p < 0.001 by ANOVA). Conversely, calcium infusion significantly reduced urinary cAMP excretion (time effect, p = 0.003 by ANOVA) in both groups.

Table 3. Effects of Calcium Infusion on Fractional Sodium and Potassium Excretion and Inulin and p-Aminohippurate Clearance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Low Na⁺ (10 mEq/day)</th>
<th>Medium Na⁺ (260 mEq/day)</th>
<th>High Na⁺ (510 mEq/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>FE Na⁺</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>1 ± 0.2</td>
<td>2 ± 0.5</td>
<td>1 ± 0.2</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>1 ± 0.2</td>
<td>2 ± 0.4</td>
<td>1 ± 0.4</td>
</tr>
<tr>
<td>FE K⁺</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>37 ± 6.2</td>
<td>31 ± 7.8</td>
<td>35 ± 4.9</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>24 ± 6.2</td>
<td>18 ± 2.6</td>
<td>18 ± 3.0</td>
</tr>
<tr>
<td>C IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>100 ± 5.1</td>
<td>88 ± 2.9</td>
<td>88 ± 7.3</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>96 ± 9.3</td>
<td>113 ± 16.1</td>
<td>103 ± 16.3</td>
</tr>
<tr>
<td>C PAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>445 ± 53.7</td>
<td>494 ± 34.2</td>
<td>481 ± 42.7</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>479 ± 59.4</td>
<td>614 ± 125.4</td>
<td>479 ± 68.0</td>
</tr>
</tbody>
</table>

Values are means ± SE before (B), during (D), and after (A) calcium infusion. FE Na⁺ = fractional excretion of sodium; FE K⁺ = fractional excretion of potassium; C IN = inulin clearance; C PAH = p-aminohippurate clearance.
may be related to increased urinary calcium excretion.

Although the cause is unknown, it has been related to increased urinary calcium excretion in patients with essential hypertension. 3, 6 Although the cause is unknown, it has been related to increased urinary calcium excretion in patients with essential hypertension.

Hypertensive subjects excreted more urinary cAMP per deciliter of glomerular filtration rate at baseline (see Table 4). The rapid suppression of cAMP excretion observed during calcium infusion supports the pathogenesis of essential hypertension.

Several clear differences in calcium and PTH homeostasis between normal and hypertensive subjects were evident before calcium infusion. Hypertensive subjects were also more sensitive to the acute effects of calcium on blood pressure than were normal subjects. Together, these and other abnormalities of sodium and calcium handling may contribute to the pathogenesis of essential hypertension.

As expected, calcium infusion markedly increased serum ionized calcium concentration and urinary calcium excretion and decreased urinary cAMP excretion. Responses in both groups were quite similar in the magnitude of the increases in serum calcium and in urinary responses. Strazzullo et al. 2 reported that urinary calcium excretion remained higher in patients with essential hypertension than in normal subjects during short-term calcium infusion. In that study, hypertensive subjects excreted more calcium than did normal subjects at every level of serum calcium. In the present experiments, we did not find that hypertensive subjects excreted more calcium during the infusion period.

Responses in both groups were quite similar in the magnitude of the increases in serum calcium and in urinary responses. Strazzullo et al. 2 reported that urinary calcium excretion remained higher in patients with essential hypertension than in normal subjects during short-term calcium infusion. In that study, hypertensive subjects excreted more calcium than did normal subjects at every level of serum calcium. In the present experiments, we did not find that hypertensive subjects excreted more calcium during the infusion period.

The reason for the differences between studies is not clear. Fractional sodium excretion also increased during short-term calcium infusion. In that study, hypertensive subjects excreted more calcium than did normal subjects at every level of serum calcium. In the present experiments, we did not find that hypertensive subjects excreted more calcium during the infusion period.

The reason for the differences between studies is not clear. Fractional sodium excretion also increased during short-term calcium infusion. In that study, hypertensive subjects excreted more calcium than did normal subjects at every level of serum calcium. In the present experiments, we did not find that hypertensive subjects excreted more calcium during the infusion period.

Increased dietary sodium chloride intake expanded extracellular fluid volume in both normal and hyper-
tensive subjects, as indicated by increased urinary sodium excretion. There was no significant effect of dietary sodium chloride on blood pressure before calcium infusion in either group. Some patients with essential hypertension are especially sensitive to the effects of dietary salt. Many others, and most subjects with normal blood pressure, demonstrate small increases in systolic and diastolic pressure when they ingest extremely large quantities of sodium (as much as twice the maximal sodium intake employed in the present study). The minimal effects of dietary sodium observed in the present study are compatible with the minimal effects of dietary sodium loading previously described, although a longer duration of reduced or elevated sodium consumption might have affected blood pressure significantly. Increasing dietary sodium intake, when consumed as sodium chloride, can induce a state of negative calcium balance by increasing urinary calcium excretion.

Some hemodynamic changes often directly attributed to altered sodium chloride intake may be mediated by alterations in systemic calcium homeostasis. The fact that there were no significant differences in sodium excretion between normal and hypertensive subjects before calcium infusion reflects similar adherence to prescribed dietary regimens. Hypertensive subjects, however, excreted less potassium than did normal controls, independent of the level of sodium intake. Dietary potassium intake has been reported to be deficient in hypertensive patients, and its supplementation may attenuate increases in blood pressure during dietary sodium loading. Because dietary potassium intake was not rigidly controlled in the present study, the reduced fractional potassium excretion may reflect differences in potassium intake or intrinsic defects in renal potassium handling. Any alteration in potassium balance in hypertensive subjects may have contributed to the observed differences in blood pressure response to infused calcium.

Systolic and diastolic pressure increased in both normotensive and hypertensive subjects in response to infused calcium under certain dietary conditions. Short-term calcium infusion increases blood pressure primarily because it increases systemic vascular resistance in both normotensive and hypertensive subjects. Cardiac output may increase during the first several minutes of calcium infusion but it returns to baseline within 30 minutes of exposure, and the increased pressure is maintained by increased vascular tone. There is strong evidence that direct vascular effects of calcium play important roles in the increased vascular resistance. Resistance of isolated perfused vascular beds varies directly, in most species, with the calcium concentration of the perfusate near physiological levels. In humans, local calcium infusions, designed to prevent changes in systemic calcium concentration and the resultant changes in circulating hormone levels and central hemodynamics, were shown to increase vascular resistance. In rats, however, vasodilation occurs when ambient calcium concentrations are raised. Increasing calcium concentrations near physiological levels in vitro increases vascular tone, while higher concentrations lead to vasorelaxation. Together, these studies suggest a role for direct local effects of calcium on vascular smooth muscle in the development of blood pressure changes during calcium infusion.

Weidmann and co-workers have studied possible hormonal consequences of calcium infusion and their contribution to the hemodynamic responses. Calcium infusion significantly increased peripheral levels of norepinephrine but had no effect on renin, aldosterone, or dopamine levels. They suggested that enhanced catecholamine release may participate in the pressor response to infused calcium. Another possible contributor to blood pressure homeostasis during calcium infusion is PTH. Short-term infusion of PTH reduces systemic pressure. In subjects with secondary hyperparathyroidism, elevated PTH levels may reduce pressure homeostatically, since the increase in systemic pressure during short-term calcium infusion correlates best with the fall in serum PTH. In most studies, the pressor response to infused calcium is not clearly correlated with the increase of serum calcium. This variability of the hemodynamic response suggests that changes in blood pressure during exposure to calcium may be multifactorial in origin and not simply direct effects of calcium itself.

The present results suggest that hypertensive subjects are more sensitive than normal subjects to the acute vascular effects of calcium, at least under certain dietary conditions. Bianchetti et al. found no difference in the slope of blood pressure versus serum calcium level during calcium infusion in normal subjects and a small number of hypertensive subjects; however, blood pressure rose in response to a low dose calcium infusion in hypertensive, but not in normotensive, subjects. Vascular reactivity to infused pressors is enhanced nonspecifically in hypertensive subjects, possibly because of structural changes in vessels. Overbeck et al. found that local infusions of calcium produced similar increases in vascular resistance in both normal subjects and those with essential hypertension when differences in baseline vascular tone were considered. Since systemic and humoral effects were prevented by infusing calcium locally, vascular effects were assumed to be direct. If the direct effects of calcium in normal and hypertensive subjects are similar, then the increased response of hypertensive subjects observed in the present study and suggested by others may reflect reduced compensatory mechanisms, altered secondary responses, or differing responses to experimental stress. Weidmann et al. found that subjects with mild chronic renal insufficiency, some of whom were hypertensive, were more sensitive to the hemodynamic effects of calcium than were normal subjects. Mori reported that total peripheral resistance decreased during very short-term calcium infusion in normotensive subjects, whereas resistance did not change in subjects with essential hypertension. Although mean arterial pressure and cardiac index increased in both groups during the infusion described by
Mori, these data suggest that vasodilation early during calcium infusion, either as a compensatory response or as a direct one, is greater in normotensive than in hypertensive subjects. As discussed previously, PTH has been shown to be vasodilative when administered acutely in vivo and in vitro. If baseline PTH concentrations are higher in hypertensive subjects, then acute suppression of PTH release during calcium infusion might reduce the vasodilative effects of this hormone to a greater extent in hypertensive than in normal subjects.

The present results indicate an interaction between sodium intake and the effects of calcium on blood pressure. Diastolic pressure did not increase during calcium infusion when subjects consumed little dietary sodium, whereas it rose during calcium infusion when sodium intake was greater. In normotensive subjects, a rise in systolic pressure was also dependent on dietary sodium intake. When dietary sodium intake was low, systolic pressure actually fell during the calcium infusion. On the other hand, systolic pressure rose in hypertensive subjects when calcium was infused regardless of dietary sodium intake. Thus, hypertensive and normal subjects exhibited frankly different responses to calcium infusion only when dietary sodium was reduced. Under conditions of more typical dietary intake, no qualitative differences were found. These differences suggest disordered interactions between sodium and calcium metabolism in hypertensive subjects.

Increased membrane calcium permeability has been described in tissues from hypertensive animals. Sodium loading may potentiate the short-term effects of calcium in normal subjects, perhaps by inducing a state of negative calcium balance. In hypertensive subjects, however, because of preexisting disorders of calcium and PTH homeostasis, vascular effects may occur without volume expansion. Rats with spontaneous hypertension exhibit impaired vasodilative responses to infused calcium compared with normotensive controls. In human hypertension as well, the balance between vasoconstrictive and vasodilative influences of calcium may be altered.

The effects of acute infusion of calcium on blood pressure, such as those observed in the current study, are quite different from more prolonged exposure to calcium. Dietary calcium loading attenuates the development of hypertension in the spontaneously hypertensive rat as well as its normotensive control, the Wistar-Kyoto rat. Chronic dietary calcium loading also reduces blood pressure in hypertensive humans. Chronic elevations of ambient calcium may act to contribute to the enhanced calcium sensitivity demonstrated in the spontaneously hypertensive rat. Hypertension 1984;6:639–646

Postnov YY, Orlov SN, Pokudin NL. Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension. Pflugers Arch 1979;379:191–195

Acknowledgments

The authors acknowledge the staff of the Clinical Research Center, the statistical assistance given by Dr. John Goffinet, the technical assistance of Sanford Plant, Janet Dorow, and Sally Morton, and the dietary assistance of Holly Henry. Dr. Frank Seney provided constructive criticism of the manuscript.

References

Effects of calcium infusion on blood pressure in hypertensive and normotensive humans.
D H Ellison, R Shneidman, C Morris and D A McCarron

Hypertension. 1986;8:497-505
doi: 10.1161/01.HYP.8.6.497

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1986 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/8/6/497

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally
published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not
the Editorial Office. Once the online version of the published article for which permission is being requested
is located, click Request Permissions in the middle column of the Web page under Services. Further
information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/