Evidence That Prostacyclin Mediates the Vascular Action of Magnesium in Humans

JERRY L. NADLER, SCOTT GOODSON, AND ROBERT K. RUDE

SUMMARY Evidence in vitro and in humans suggests that Mg2+ can alter systemic and renal vascular tone. However, the mechanism of these effects is not known. The role of vasodilator prostaglandin release and Ca2+ flux in Mg2+-induced changes in blood pressure and renal blood flow was studied in 10 normal subjects maintained on a fixed 80-mEq Na+ and K+ diet. Magnesium sulfate infused at 200 mg/hr for 3 hours reduced systolic and diastolic blood pressure within 1 hour (from 119 ± 2 [SEM] to 109 ± 4 mm Hg systolic; from 74 ± 3 to 64 ± 4 mm Hg diastolic; p<0.02). This hypotensive response was seen in all subjects and persisted for 3 hours. The pulse rate did not change, but renal blood flow (p-aminohippurate clearance) increased (from 902 ± 78 to 1108 ± 130 ml/min/1.73 m2; p<0.05). The Mg2+ infusion produced a significant increase in the excretion of the stable prostaglandin I2 (PGI2) metabolite 6-keto-PGF1α (from 96 ± 12 to 154 ± 16 ng/g creatinine; p<0.01). In contrast, urinary PGE2 was not altered (328 ± 75 vs 399 ± 145 ng/g creatinine; p>0.6). To evaluate the functional role of PGI2 release, the cyclooxygenase inhibitors indomethacin (75 mg) or ibuprofen (600 mg) were given before the Mg2+ infusion. Both cyclooxygenase blockers, given in doses that inhibited immunoreactive 6-keto-PGF1α release, completely prevented the Mg2+-induced decline in blood pressure and increased renal blood flow. In addition, pretreatment with the Ca2+ channel antagonist nifedipine (20 mg sublingual) blocked the Mg2+-stimulated rise in PGI2 and fall in blood pressure. These results suggest that Ca2+ flux and PGI2 release play a role in mediating the vascular action of Mg2+ in humans. (Hypertension 9: 379-383, 1987)

KEY WORDS • prostacyclin • magnesium sulfate • blood pressure • renal blood flow

INCREASING evidence suggests that changes in the concentration of Mg2+ can alter vascular smooth muscle tone and reactivity. Reduction of extracellular Mg2+ concentration perfusing isolated canine and human vessels produces vasoconstriction and potentiates the pressor effects of angiotensin II and norepinephrine.1,2 In contrast, increasing the levels of Mg2+ relaxes vascular smooth muscle and reduces pressor responses.3 Mg2+ depletion in rats not only increases blood pressure but also reduces microcirculatory blood flow, while in humans Mg2+ supplementation augments the reduction in blood pressure induced by diuretics.5

The mechanism of Mg2+ vascular action is not fully understood. However, recent evidence indicates that Mg2+ may alter Ca2+ flux and intracellular Ca2+ levels.6,7 Prostacyclin (PGI2) is a potent vasodilator prostaglandin that is produced in vessels and the kidney.8 In vitro evidence and our recent studies in humans indicate that Ca2+ flux is a key signal for PGI2 release.9,10 However, the role of Mg2+ in PGI2 synthesis is not known. The current study was designed to investigate the role of Ca2+ flux and PGI2 release in the renal and systemic vascular actions of Mg2+. Th... results suggest that PGI2 release plays a key role in mediating the vasodilator effects of Mg2+ in humans.

Subjects and Methods

Ten normal volunteers (7 men, 3 women), aged 21 to 44 years, were studied in the Clinical Research Center under informed consent after 4 days of equilibration on a constant 80-mEq Na+, 80-mEq K+ diet. On 1 day, the subjects received an infusion of dextrose and water and a 3-hour urine sample was collected in parallel to serve as a control. On another day, the
subjects received a 3-hour infusion of MgSO₄ (200 mg/hr) using a constant infusion pump (IMED, San Diego, CA, USA). To evaluate the role of vasodilator prostaglandin, the Mg²⁺ infusion was repeated on another day during cyclooxygenase blockade with either indomethacin (Indocin, 75 mg; Merck Sharp & Dohme, Philadelphia, PA, USA) or ibuprofen (Motrin; Upjohn, Kalamazoo, MI, USA). Three doses of the respective cyclooxygenase inhibitor were given 8 hours apart before the Mg²⁺ infusion. On another day a repeat Mg²⁺ infusion was given during Ca²⁺ channel blockade with nifedipine (Procardia, 20 mg sublingual; Pfizer, NY, USA). The 3-hour urine samples were collected during all infusions, and an aliquot was immediately frozen at -20°C for later prostaglandin assay. During the Mg²⁺ infusions p-aminohippurate (PAH) was infused, using a constant infusion method, to evaluate renal blood flow. PAH was begun 2 hours before each Mg²⁺ infusion to ensure steady state basal levels.

Plasma for PAH was obtained in triplicate for basal renal blood flow and then hourly during the Mg²⁺ infusion. PAH was measured by standard spectrophotometric technique, 11 and renal blood flow was calculated as estimated renal plasma flow divided by 1 - hematocrit normalized to 1.73 m² body surface area; values are reported in units of ml/min/1.73 m². Serum Mg²⁺ was determined by atomic absorption spectrophotometry before and at the completion of each infusion.

PGI₂ production was estimated by radioimmunoassay of the stable PGI₂ metabolite 6-keto-PGF₁α in urine, as previously described. 12 In brief, an acidified urine sample with authentic [³H]6-keto-PGF₁α (New England Nuclear, Boston, MA, USA) added for recovery was extracted with ethyl acetate and then purified on high resolution Sephadex LH-20 columns (80 x 1 cm), which separates the major prostaglandin metabolites, including 2,3-dinor-6-keto-PGF₁α. The peak fraction, as determined by [³H]6-keto-PGF₁α, is then assayed using a sensitive and specific 6-keto-PGF₁α antiserum, 13 and a second antibody method is used to separate bound from free ligand. 14 Recovery of added tracer averages 60 ± 6%. Interassay variation is 12%, and intraassay variation is 6%. Sensitivity is 10 pg/ml, and the assay blank averages 2 pg/ml. This assay has been validated with several techniques including negative-ion gas chromatography-mass spectrometry. 10 In addition, urinary PGE₂ excretion was determined by a published radioimmunoassay method after several purification steps. 14

Infusions were performed during the same time of day (1300–1600) and in nonsmoking subjects, since both time of day and smoke inhalation can alter 6-keto-PGF₁α excretion in humans. 15,16 Values are reported as the mean ± SEM. Prostaglandin values are expressed in units of nanograms per gram of creatinine. Each subject was used as his or her own control and prostaglandin samples were run in the same assay. For statistical analysis the paired t test was used to compare control and experimental values using a CLINFO computer system.

Results

Mg²⁺ Infusion Alone

The infusion produced a significant rise in serum Mg²⁺ concentration (Table 1). Systolic and diastolic blood pressure was reduced within 1 hour of Mg²⁺ administration (from 119 ± 2 to 109 ± 4 mm Hg systolic; from 74 ± 3 to 64 ± 4 mm Hg diastolic; p < 0.02). This hypotensive response persisted for 3 hours (Figures 1 and 2). The pulse rate did not change (68 ± 4 vs 72 ± 2 beats/min; p > 0.5), while renal blood flow was significantly increased (from 902 ± 78 to 1108 ± 130 ml/min/1.73 m²; p < 0.05; Figure 3).

The Mg²⁺ infusion produced a marked increase in the excretion of immunoreactive 6-keto-PGF₁α (from 96 ± 12 to 154 ± 16 ng/g creatinine; p < 0.01; Figure 4). However, urinary PGE₂ levels were not altered (328 ± 75 vs 399 ± 145 ng/g creatinine; p > 0.6).

Effect of Cyclooxygenase Inhibition

The Mg²⁺ infusion in subjects who were pretreated with indomethacin or ibuprofen produced changes in serum and urinary Mg²⁺ similar to those seen with the Mg²⁺ infusion alone (see Table 1). However, the use of cyclooxygenase blockers totally prevented the Mg²⁺-induced decrease in systolic and diastolic blood pressure (see Figures 1 and 2). Several subjects showed increases in blood pressure. The pulse rate did not change (71 ± 2 vs 68 ± 2; p > 0.4). Similarly renal blood flow did not increase, and values were similar to baseline (850 ± 125 vs 902 ± 78; p > 0.1; see Figure 3).

The cyclooxygenase blockers given alone did not alter basal blood pressure (114 ± 3 mm Hg systolic;

Table 1. Effect of Mg²⁺ Infusion Alone and With Inhibitors on Serum Mg²⁺ Concentration and Urinary Mg²⁺ Excretion

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mg²⁺ infusion</th>
<th>Mg²⁺ + I</th>
<th>Mg²⁺ + N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal serum Mg²⁺ (mg/dl)</td>
<td>2.0 ± 0.2</td>
<td>1.94 ± 0.2</td>
<td>1.83 ± 0.1</td>
</tr>
<tr>
<td>Postinfusion serum Mg²⁺ (mg/dl)</td>
<td>4.23 ± 0.2*</td>
<td>4.31 ± 0.4*</td>
<td>4.19 ± 0.2*</td>
</tr>
<tr>
<td>Urinary Mg²⁺ (mg/g creatinine)</td>
<td>0.658 ± 0.08</td>
<td>0.655 ± 0.06</td>
<td>0.892 ± 0.06*</td>
</tr>
</tbody>
</table>

Values are means ± SEM. I = indomethacin, 75 mg, or ibuprofen, 600 mg; N = nifedipine, 20 mg sublingual.

*tp < 0.01, compared with basal values.

†tp < 0.05, compared with Mg²⁺ + I values.
PROSTACYCLIN MEDIATES VASCULAR ACTION OF MAGNESIUM/Nadler et al. 381

SYSTOLIC BP

mm Hg

140

120

110

100

90

0 180 min

Mg2+

Mg2+ + I

FIGURE 1. Effect of MgSO4 infusion alone (●) or with cyclooxygenase inhibition (○) on systolic blood pressure (BP). The circles represent individual subjects, while the lines show the mean values before and after 3 hours of infusion. I = indomethacin or ibuprofen. Asterisk indicates significant difference (p<0.01, paired Student's t test).

DIASTOLIC BP

mm Hg

80

70

60

50

40

30

20

10

0 180 min

Mg2+

Mg2+ + I

FIGURE 2. Effect of MgSO4 infusion alone (●) or with cyclooxygenase inhibition (○) on diastolic blood pressure (BP). Asterisk indicates significant difference (p<0.01, paired Student's t test).

74 ± 6 mm Hg diastolic) or renal blood flow (896 ± 80 ml/min/1.73 m²). Both indomethacin and ibuprofen completely prevented the Mg2+-induced rise of 6-keto-PGF1α and produced levels similar to control (82 ± 22 vs 95 ± 12 ng/g creatinine; p > 0.4).

Effect of Ca2+ Channel Blockade

Pretreatment with nifedipine did not alter the increase in serum or urinary Mg2+ levels after Mg2+ administration (see Table 1). However, urinary Mg2+ excretion was slightly higher when compared with the Mg2+ infusion during cyclooxygenase inhibition (see Table 1).

Systolic and diastolic blood pressure remained unchanged during the Mg2+ infusion with nifedipine (116 ± 4 vs 114 ± 2 mm Hg systolic; 76 ± 4 vs 72 ± 3 mm Hg diastolic; p > 0.5). In addition, nifedipine completely blocked the Mg2+-stimulated rise of 6-

Discussion

The vasodilator effects of Mg2+ have been known for many years. In 1942, administration of Mg2+ to subjects with hypertension was shown to reduce blood pressure. More recent evidence indicates that Mg2+ supplementation can enhance the hypotensive effect of diuretic therapy. A deficiency of cellular Mg2+ content can markedly potentiate the sensitivity of blood vessels to pressor agents, and intracellular Mg2+ levels are reduced in untreated essential hypertensive subjects. Therefore, Mg2+ deficiency may play a role in the development and maintenance of essential hypertension.

The current study in normal subjects reveals that MgSO4 infusion significantly reduces systolic and dia-
stolic blood pressure and increases renal blood flow. These results are similar to those in a previous study and indicate that Mg²⁺ can alter systemic and renal vascular tone.

The mechanism of Mg²⁺-induced vasodilation is not completely known. Evidence in vitro indicates that Mg²⁺ may compete with Ca²⁺ for binding sites in vascular tissue, thereby preventing Ca²⁺-induced vascular constriction. However, other results have not been consistent and show variable changes in Ca²⁺ flux or intracellular Ca²⁺ levels with increasing Mg²⁺ concentration. A recent study using the calcium-sensitive dye quin 2 reported that Mg²⁺ produced a rise in intracellular Ca²⁺ concentration in dispersed bovine parathyroid cells. Other evidence indicates that Mg²⁺ may displace Ca²⁺ from intracellular sites and reduce Ca²⁺ efflux, the net result being a transient rise in intracellular Ca²⁺ levels.

Considerable evidence suggests that the vasodilator prostaglandins PGI₂ and PGF₂α participate as protective modulators of systemic and renal blood flow during states of increased pressor activity or ischemia. Evidence in vitro indicates that vasodilator prostaglandin release mediates the vascular action of Mg²⁺. The MgSO₄ infusion selectively increased PGI₂ formation, as reflected by immunoreactive 6-keto-PGF₁α in urine, indicating that PGI₂ is the major vascular prostaglandin mediating these effects. Under basal conditions urinary 6-keto-PGF₁α reflects renal vascular PGI₂ production, while another PGI₂ metabolite, 2,3-dinor-6-keto-PGF₁α, generally reflects extrarenal PGI₂ production. However, systemic PGI₂ formation can produce a rise in urinary 6-keto-PGF₁α under stimulated conditions. Therefore, the increase in immunoreactive 6-keto-PGF₁α during the Mg²⁺ infusion may reflect both renal and extrarenal PGI₂ release. This suggestion is supported by the results showing a complete blockade of the Mg²⁺-induced decrease in systemic and renal vascular tone with cyclooxygenase inhibition.

The direct effect of Mg²⁺ on PGI₂ release could not be fully evaluated in this study since we infused MgSO₄. However, evidence in cultured human endothelial cells indicates that the Mg²⁺ ion and not changes in SO₄ or osmolality are responsible for the stimulation in PGI₂ formation. Similarly, other evidence indicates that Mg²⁺ and not the associated anion is primarily responsible for its vascular effects. Previous evidence in vitro and our results in humans suggest that Ca²⁺ flux activates phospholipase and is an important signal for PGI₂ synthesis. Since Mg²⁺ may alter the transport and intracellular levels of Ca²⁺, we evaluated the effect of the Ca²⁺ channel blocker nifedipine. The dose of nifedipine used has been shown previously to block only the Ca²⁺-mediated and not basal PGI₂ production. In the present study, nifedipine completely prevented the Mg²⁺-induced stimulation of PGI₂ release. Similarly, the Ca²⁺ antagonist blocked the Mg²⁺-induced decrease in blood pressure. This finding suggests that the Mg²⁺-induced vasodilation is linked to PGI₂ release by changes in Ca²⁺ flux. This mechanism of vasodilation is not unique to Mg²⁺ since other studies show that bradykinin-stimulated release of PGI₂ is also calcium-dependent.

The increased excretion of immunoreactive 6-keto-PGF₁α does not appear to be secondary to changes in renal blood flow. Previous studies in humans indicate that vasodilators that can increase renal blood flow, such as isoproterenol, nifedipine, and prazosin, do not increase immunoreactive 6-keto-PGF₁α levels. In addition, vasopressor agonists, such as angiotensin II and norepinephrine, either do not change or increase 6-keto-PGF₁α levels.

The precise reason for the selective increase in PGI₂ without changes in PGE₂ is not totally clear from this study. One possible explanation is that PGE₂ is less sensitive in vitro and in humans to changes in Ca²⁺ flux. In addition, studies in renal medullary tissue indicate that increases in Mg²⁺ do not stimulate PGE₂ synthesis. Therefore, arachidonic acid released in response to changes in extracellular Mg²⁺ in humans is converted primarily into PGI₂, resulting in unaltered levels of PGE₂.

In summary, these results suggest that PGI₂ release plays a key role in the systemic and renal vasodilator effects of Mg²⁺. These findings may provide a physiological basis for the use of Mg²⁺ in disorders of altered vascular tone such as essential hypertension and pre-eclampsia.

Acknowledgments

The authors thank Dr. Vito Campese for his assistance in performing the renal blood flow studies and Ms. Denise Walters for her excellent secretarial assistance. The authors also thank Ms. Josie Yamamoto for her help in performing the prostaglandin assays. Computational assistance was provided by a CLINFO project funded by the Division of Research Resources of the National Institutes of Health under Grant RR 43.

References

8. Moncada SR, Gryglewski RJ, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides...
Evidence that prostacyclin mediates the vascular action of magnesium in humans.
J L Nadler, S Goodson and R K Rude

Hypertension. 1987;9:379-383
doi: 10.1161/01.HYP.9.4.379

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/9/4/379