Response

The fundamental premise of substitution mapping is to be able to track the blood pressure (BP) effects of quantitative trait loci (QTL) that are introgressed within a congenic strain. Based on this paradigm, our report\(^1\) clearly excludes *Resp18* as the QTL within the 117-kb region of interest. Cai contemplates the possibility that *Resp18* plays a role in BP. In our opinion, a good experiment to test this is to study a minimal congenic strain around the *Resp18* locus.

Cai brings out an interesting point of whether a homolog of *Resp18* exists in the critical 117-kb region. *IA-2*, or *ICA512*, is one such gene, the protein product of which was originally reported to have 27% identity and 56% similarity with the 18-kDa *Resp18* protein.\(^2\) We are glad that Cai could utilize the data presented in our manuscript and arrive at 2 speculations: (1) *IA-2* is probably the causative gene for the 117-kb BP QTL. The least that this speculation could be based on is a single nucleotide polymorphism (SNP) of *IA-2* between Dahl salt-sensitive (S) rats and Dahl salt-resistant (R) rats. We have identified numerous SNPs between the S and R rat within and around *IA-2*. Unpublished data demonstrate that, at least independently, none of these SNPs affect BP. Further, the microarray experiment reported in our article\(^1\) did not detect any renal differential expression of *IA-2* between S and the congenic strain (GEO accession no. GSE 1775, probes D38222_s_at and rc_AI137484_at). Thus, so far we do not have any evidence, at the level of either the gene sequence or transcription, to suggest that *IA-2* is the BP QTL. Cai indicates that experiments using mouse *IA-2* are underway. We look forward to the results of this study. Nevertheless, phenotypic effects of knockout mice may not always reflect the properties of natural allelic variants of a gene in a congenic strain.\(^3,4\) (2) *Resp18* and *IA-2* may possess an additive effect on BP. This speculation is contrary to the data provided in our report,\(^1\) wherein we have demonstrated that the effects of the QTL gene within the 117-kb region and that of *Resp18* are not additive.\(^5\)

The amino acid substitution of *Resp18* is correct in our report (ie, the sequence variation is from Isoleucine [Ile] to Valine [Val]). However, there is a discrepancy in the location of nucleotide coding for this amino acid substitution. The T/C variation reported in Figure 3 of our article\(^1\) is that of genomic DNA. This variation corresponds to a SNP of A/G at position 286 (not 272 as reported) from the 5’ untranslated region of the mRNA transcript of *Resp18*. This SNP alters the amino acid 67 of *Resp18* from Ile in S rats to Val in R rats.

Finally, please note that in Cai’s letter there is some confusion about amino acid 62. It is referred to as Ile (Isoleucine) in the text, but depicted as L (Leucine) within the sequence comparisons. We would like to clarify that amino acid 62 is L in the protein database (NP_062151 at http://www.ncbi.nlm.nih.gov) as well as in S and R rats.

Michael R. Garrett
John P. Rapp
Bina Joe
Physiological Genomics Laboratory
Department of Physiology and Cardiovascular Genomics
Medical University of Ohio
Toledo, Ohio
Haijin Meng
Department of Medicine
Division of Cardiology
University of California
Los Angeles, California
Response
Michael R. Garrett, John P. Rapp, Bina Joe and Haijin Meng

Hypertension. published online October 10, 2005:
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/early/2005/10/10/01.HYP.0000187510.46439.57.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/