Clarifying Endothelin Type B Receptor Function

David M. Pollock, Markus P. Schneider

Endothelin (ET) receptors have become the targets for the treatment of a variety of cardiovascular disorders and a mixed ET type A (ET\textsubscript{A})/ET type B (ET\textsubscript{B}) receptor antagonist, bosentan, is currently being used to effectively treat pulmonary hypertension. An ongoing debate has revolved around the question of whether selective ET\textsubscript{A} receptor blockade would be preferable to using the mixed antagonist. The functional role of ET-1 is complicated by the opposing actions of the ET\textsubscript{A} and ET\textsubscript{B} receptors in the vasculature, as well as the kidney. ET\textsubscript{B} receptor function is further complicated by the presence of vasoconstrictor ET\textsubscript{B} receptors on vascular smooth muscle in some vascular beds, whereas ET\textsubscript{B} receptors on endothelium and renal tubules have vasodilator and natriuretic activities. ET\textsubscript{B} receptors also serve to clear ET-1 from the circulation and, thus, minimize vasoconstrictor activity. Despite the well-recognized effects of ET\textsubscript{B} receptors to oppose ET\textsubscript{A}-mediated actions, it is not clear whether blocking both ET\textsubscript{A} and ET\textsubscript{B} receptors at the same time is detrimental or advantageous compared with selective ET\textsubscript{A} blockade. Indeed, ET\textsubscript{A} selective antagonists are also expected to soon receive approval for treatment of pulmonary hypertension. Although this may indicate that both strategies work in pulmonary hypertension, the pros and cons of selective versus mixed antagonists are much less clear in arterial hypertension and heart and kidney failure.

Previous studies have shown that pharmacological blockade or genetic deficiency of ET\textsubscript{B} receptors results in salt-sensitive hypertension in rats. More recent studies have now provided information on the location(s) of the ET\textsubscript{B} receptors responsible for this effect. Ahn et al demonstrated salt-sensitive hypertension in mice where ET-1 expression was selectively knocked out in the renal collecting duct. It was not clear, however, whether ET-1 originating from the collecting duct acts on ET\textsubscript{B} receptors of vascular elements within the renal medulla or in an autocrine fashion on ET\textsubscript{B} receptors of collecting duct cells. In the current issue of Hypertension, Bagnall et al report that selective deletion of the ET\textsubscript{B} receptor from endothelial cells in mice has no affect on blood pressure or salt sensitivity despite reduced endothelial-dependent relaxation. The authors conclude that ET-1 more likely acts in an autocrine fashion on collecting duct cells, as opposed to activating endothelial ET\textsubscript{A} receptors on vasa recta, which could facilitate sodium excretion through an increase in medullary perfusion. This conclusion is further supported by reports that ET\textsubscript{B} receptors inhibit electrolyte reabsorption in vitro. Strictly speaking, a role for increased medullary perfusion in the renal response to a high-salt diet mediated by the ET\textsubscript{B} receptor cannot be completely ruled out yet. It is conceivable that activation of ET\textsubscript{A} receptors on tubular cells causes vasa recta to dilate through a "tubulovascular crosstalk" mechanism similar to that described previously for buffering angiotensin II–mediated vasoconstriction in the renal medulla and mediated by NO. Although some questions do remain about the precise mechanisms, the studies by Bagnall et al, together with previous results from other groups, indicate a major role for renal tubular ET\textsubscript{B} receptors in mediating ET-1–induced natriuresis.

In addition to giving new insight into the renal mechanisms, the current study also seems to dramatically reduce the likelihood of vascular endothelial ET\textsubscript{B} receptors mediating salt-sensitive hypertension during systemic ET\textsubscript{B} receptor blockade. Interestingly, previous cross-transplantation experiments in ET\textsubscript{B} receptor–deficient rats showed that salt sensitivity in this model depended on the deletion of extrarenal ET\textsubscript{A} receptors. This raises the possibility that a yet-unknown extrarenal ET\textsubscript{A} receptor may have a protective effect against salt-sensitive hypertension, in addition to the ET\textsubscript{B} receptor on renal tubular cells. Although it has been assumed for quite some time that the endothelial ET\textsubscript{B} receptor is responsible for clearing circulating ET-1, the functional ramifications of this concept have been difficult to discern with other models in rats, such as pharmacological ET\textsubscript{B} receptor blockade or ET\textsubscript{B} receptor deficiency. Endothelial-specific ET\textsubscript{B} knockout mice have elevated levels of circulating ET-1, which provide even more definitive evidence for a role of ET\textsubscript{B} receptors on endothelium in clearing ET-1 from the circulation. However, it is now also important to realize that the resulting elevations in circulating ET-1 do not account for the hypertension produced by pharmacological or genetic disruption of the ET\textsubscript{B} receptor as documented previously. Several laboratories have shown that hypertension produced by ET\textsubscript{B} receptor blockade or high-salt intake in ET\textsubscript{B} receptor–deficient rats can be blocked by ET\textsubscript{A} receptor antagonism. Although an obvious argument is that a lack of ET\textsubscript{B} receptors displaces ET-1 to produce greater ET\textsubscript{A} receptor–dependent vasoconstriction, this cannot account for the hypertension in these models given these new findings. Just because ET\textsubscript{A} receptor blockade reduces blood pressure in a model of hypertension does not signify that the hypertension was produced by increased ET\textsubscript{A} receptor activation. It is also not clear how a shift of ET-1 from the ET\textsubscript{B} to the ET\textsubscript{A} receptor could explain the salt dependence of these models. Again, these new results favor a renal mechanism for the salt-sensitive hypertension observed with ET\textsubscript{B} receptor blockade or genetic deficiency of ET\textsubscript{B} receptors.

Although this study represents an important advance in our understanding of how ET-1 controls blood pressure, there are a number of questions about ET\textsubscript{B} receptor function that remain. It should be noted that control mice in the current study were salt sensitive, and so it will be important to establish that a lack of...
endothelial ETα receptors does not result in salt-dependent hypertension in mice with a salt-resistant genetic background.

Another issue that no one has yet addressed is whether gastrointestinal absorption of salt is altered in animals lacking ETα receptor function. ET-3, which selectively acts on ETα Receptors, has been shown previously to inhibit intestinal sodium reabsorption in dogs.12 The precise location of the ETα receptor responsible for this effect can now be further investigated with this new model or other tissue-specific models. Finally, there is emerging evidence for ETα receptor influence within the sympathetic nervous system that may participate in short-term blood pressure control.13

Throughout the literature, there are many references to the phenomenon known as “endothelial dysfunction.” It is quite commonly referred to as a reduced vasodilator response to acetylcholine administration, and so it is clear that we must now include reduced ETα receptor function as one possible cause of the dysfunction. Even more intriguing, reduced endothelial-dependent vasodilation in endothelial cell ETα receptor knockout mice does not translate into hypertension. These results add important new information to the ongoing debate of whether endothelial dysfunction is a cause or a consequence of hypertension. Similarly, vascular overexpression of ET-1 in mice has been shown to lead to endothelial dysfunction in the absence of hypertension.14 Whether the absence of hypertension is specific to the endothelial dysfunction induced by increased expression of ET-1 or deletion of endothelial ETα receptors remains to be determined. It will also be important to investigate what changes in ETα receptor activity, if any, occur within the vascular system when the ETα receptor is absent from the endothelium.

In summary, the work of Bagnall et al4 represents an important advance in the understanding of how ET-1 controls blood pressure and the response to salt and provides a valuable new tool for exploring ETα receptor function. Because so much focus has been on the negative effects of ETα receptor activation in cardiovascular disease, function of the ETα receptor on the endothelium has been a relatively underinvestigated aspect of the ET system. Although many questions remain, the work from this group and others, including results with the collecting duct-specific knockout mice, clearly establish an important role for renal epithelial ETα receptors in regulating salt excretion. This study should provide an impetus for more focus on ETα receptor function in control of vascular function and also represents another important piece of the puzzle that will eventually answer the question as to when and where ETα receptor blockade may be helpful or harmful.

Disclosures

None.

References
