Obesity, Insulin Resistance, and Nocturnal Systolic Blood Pressure

Adam Whaley-Connell, James R. Sowers

An increasing prevalence of obesity is observed in all age and ethnicity groups and is increasingly being recognized as a serious health problem in children and adolescents.\(^1\)\(^-\)\(^4\) Obesity is associated with a number of metabolic abnormalities, as well as increased risk for cardiovascular disease (CVD).\(^3\)\(^-\)\(^4\) In this issue of *Hypertension*, Lurbe et al\(^5\) reported a relationship between insulin resistance, determined by the homeostatic model assessment technique, and nocturnal elevations of systolic blood pressure and heart rate in a large cohort of overweight and obese European children and adolescents. This relationship was present even after adjustment for age, sex, and height. Furthermore, waist circumference was strongly associated with insulin resistance, and both waist circumference and insulin resistance were associated with elevated nocturnal, but not daytime, blood pressures. These are important observations despite some limitations as to the methodology that the investigators used. One limitation of this report is the fact that sleep was not well documented, which limited the ability to strongly relate the nocturnal blood pressures and heart rate to circadian rhythmicity. Another potential limitation of this study relates to the fact that the children were recruited from an obesity clinic; therefore, the data may not be representative of the general population of children and adolescents. Finally, the results of this study are limited by the fact that it was a cross-sectional rather than a prospective longitudinal investigation. Nevertheless, the observations in this study are in concert with previous reports of a positive relationship between insulin resistance and hypertension in children and adolescents.\(^6\)\(^-\)\(^7\) As noted by the authors, the results of this cross-sectional study need to be validated in prospective longitudinal investigations in this population. Furthermore, the impact of weight reduction and other strategies to improve insulin sensitivity on elevated nocturnal blood pressures would be a potentially important avenue of investigation. Because both nocturnal elevation of blood pressure and insulin resistance are predictive of renal disease,\(^8\)\(^-\)\(^9\) as well as CVD, the impact of insulin resistance and elevated nocturnal systolic blood pressure in children on blood pressure temporal trends, as well as the impact on development of CVD and renal disease in adulthood, needs to be assessed in future prospective studies.

The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.

From the Department of Physiology (J.R.S.), Department of Internal Medicine (A.W-C., J.R.S.), Diabetes and Cardiovascular Center (A.W-C., J.R.S.), University of Missouri School of Medicine, and Harry S. Truman Veterans’ Affairs Medical Center (A.W-C., J.R.S.), Columbia, Mo. Correspondence to James R. Sowers, University of Missouri, Columbia School of Medicine, D109 Diabetes Center, UHC, One Hospital Dr, Columbia MO 65212. E-mail sowersj@health.missouri.edu

*Hypertension* is available at http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.107.100255
A loss of the normal 24-hour circadian blood pressure and heart rate pattern has been reported in those with autonomic nervous abnormalities accompanying obesity and insulin resistance.8–11 A nondipping pattern may be promoted by increases in inflammation, oxidative stress, endothelial dysfunction, and early renal disease, as manifested by the presence of microalbuminuria (Figure).8–11 Obesity and insulin resistance contribute to endothelial dysfunction, increased sympathetic nervous system activity, increased cardiovascular and renal oxidative stress, and inflammation (Figure).4 There is increasing evidence suggesting that adipose tissue, especially central fat, is a major source of production of inflammatory cytokines.4 These inflammatory molecules, in turn, may contribute to insulin resistance, endothelial dysfunction, and activation of the sympathetic nervous system, as well as the renin-angiotensin-aldosterone system.12 Collectively, these metabolic and vascular abnormalities are associated with loss of the normal circadian rhythm of blood pressure (Figure).8–11 There are substantial data indicating that the presence of nocturnal nondipping is an important harbinger for CVD and chronic kidney disease in the adult population; the current investigation by Lurbe et al5 highlights the importance of this emerging biomarker for CVD and early renal disease9 in the adolescent population. Therefore, determining its presence and development of strategies to correct this abnormality may be very important in the future management of obesity and insulin resistance in children. This approach could potentially be a preventative measure for the development of CVD and chronic kidney disease in adulthood. Hopefully, publication of this cross-sectional study will lead to prospective studies evaluating the relationship between isolated nocturnal elevations of systolic blood pressure and heart rate and the development of sustained daytime hypertension, as well as biomarkers of CVD and chronic kidney disease during adolescence and early adulthood. Prospective longitudinal studies are also needed to ascertain the impact of weight reduction, exercise, and other hygienic measures in children to determine whether restoration of normal insulin sensitivity and circadian rhythm of blood pressure and heart rate is contemporaneously associated with reductions of albuminuria and other biomarkers of early renal disease and CVD in young adults.

Acknowledgment

The authors acknowledge the excellent illustrative support of Stacy Turpin.

Sources of Funding

Funding was provided by NIH and VA.

Disclosures

The authors have received grants from Novartis and have served as consultants to Novartis, Forrest, and Tahula.

References

Obesity, Insulin Resistance, and Nocturnal Systolic Blood Pressure
Adam Whaley-Connell and James R. Sowers

Hypertension. published online January 22, 2008;
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/early/2008/01/22/HYPERTENSIONAHA.107.100255.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/