Nanotechnology offers great potential benefits for drug delivery and therapy of respiratory and systemic diseases. Nanoparticles (NPs) have been of significant interest for some time because they can be designed to simultaneously carry a drug payload, specifically target features of diseased tissues, and carry an imaging molecule to track drug accumulation and clearance in tissues. Moreover, they can be engineered to tailor drug delivery and improve pharmacokinetics. A variety of NPs have been investigated in experimental animal models as tools to improve the delivery and therapeutic efficacy of drugs or genes delivered to the lung or other organ systems.1 The nanotechnology platform for drug delivery contains a number of very different types of nanostructures with widely varying properties. Examples of these NPs include dendrimers, fullerenes, carbon nanotubes, and polymeric NPs.

In this issue of Hypertension, Kimura et al2 report that nuclear factor \(\text{κB} \) (NF-\(\text{κB} \)) decoy oligodeoxynucleotides (ODNs) encapsulated in poly-(ethylene glycol)-\(\text{block}-\text{lactide/glycolide} \) copolymer NPs and delivered to the lungs of rats by intratracheal instillation reduced pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). They showed that NP-encapsulated NF-\(\text{κB} \) decoy, visualized by fluorescein isothiocyanate labeling, reached the distal regions of the lungs and was present in alveolar macrophages and small pulmonary arteries for \(\leq 14 \) days after a single instillation. The small pulmonary arteries were also found to be a site of NF-\(\text{κB} \) activation and NF-\(\text{κB} \)-dependent inflammatory cytokine production (monocyte chemotactic protein 1, interleukin 1, and tumor necrosis factor \(\alpha \)) in patients with PAH and in rats with MCT-induced PAH. The decoy ODNs, unlike antisense ODNs, which bind specific regions in mRNA, bind directly to the transcription factor and inhibit transcription factor binding to target DNA and initiation of gene transcription (Figure). It was speculated by the authors that cellular uptake of the NPs might slowly release encapsulated decoys into the cytoplasm as the polymeric structure of the NP is hydrolyzed, thereby protecting the encapsulated decoy from intracellular degradation before its arrival to the nuclear target and optimizing the inhibitory activity of the decoy. It is noteworthy that the authors of this study showed that treatment of rats with the NF-\(\text{κB} \) decoy NPs 3 weeks after MCT injection led to improved survival.2 This finding is more clinically relevant than showing prevention of PAH with decoy NP treatment before MCT exposure and suggests that individuals with established PAH could potentially benefit from this type of therapy.

The NF-\(\text{κB} \) pathway is one of the most important cellular signal transduction pathways involved in both physiological processes and disease conditions. It plays important roles in the control of immune function, inflammation, stress response, differentiation, apoptosis, and cell survival.3 Moreover, NF-\(\text{κB} \) is involved in cellular processes critical to the development and progression of cancers. NF-\(\text{κB} \) is a logical choice as a target to reduce lung inflammation after injury, because a countless number of inflammatory mediators are regulated by NF-\(\text{κB} \). Decoy ODNs for NF-\(\text{κB} \) have been described previously as a possible strategy for the treatment of numerous diseases, including myocardial infarction, glomerulonephritis, arthritis, and cancer.4 The pathology of these diseases is relatively complicated because of the plethora of cytokines (eg, interleukin 1, interleukin 6, interleukin 8, and tumor necrosis factor \(\alpha \)) and adhesion molecules (eg, vascular cell adhesion molecule and intercellular adhesion molecule) that drive the associated inflammatory process. However, an underlying feature of these diseases is that the transcriptional regulation of many of these cytokines and adhesion molecules is controlled by NF-\(\text{κB} \). Therefore, blocking NF-\(\text{κB} \) represents a more efficient strategy for reducing inflammation and disease progression than blocking the action of individual downstream mediators that are regulated by NF-\(\text{κB} \). It is recognized that many normal physiological functions are regulated by NF-\(\text{κB} \), and so the efficacy of this strategy in reducing inflammation could come at a high cost. For example, NF-\(\text{κB} \) is a key regulator of immune function, and blocking this signaling pathway could reduce immunity and compromise host defense. Therefore, although NF-\(\text{κB} \) is an attractive target for the treatment and prevention of a wide spectrum of diseases, some caution should be taken to reduce the risk of developing NF-\(\text{κB} \) inhibitors that might have the deleterious adverse effect of dampening the normal physiological functions of NF-\(\text{κB} \).

Targeting NF-\(\text{κB} \) with an ODN decoy is a relatively novel approach to PAH treatment, especially in the context of combining this therapy with NP-mediated delivery. A previous rat study conducted by Sawada et al3 demonstrated that the NF-\(\text{κB} \) inhibitor pyrrolidine dithiocarbamate reduced nuclear localization of NF-\(\text{κB} \) and vascular cell adhesion
molecule 1 expression on the endothelium of diseased vessels in the lungs and ameliorated MCT-induced PAH. However, pyrrolidine dithiocarbamate is an antioxidant, as well as an NF-κB inhibitor, and the authors of this study acknowledged that the beneficial effects observed could have been attributed to antioxidant properties of pyrrolidine dithiocarbamate. In addition, they mentioned that there is no evidence from genetically modified animals to demonstrate that NF-κB activation itself is necessary for the development of PAH. Although mice with conditional mutations of the NF-κB system are available, MCT-induced PAH models are unfortunately not reproducible in mice. Despite these limitations, encapsulating pyrrolidine dithiocarbamate or other pharmacological NF-κB inhibitors within NPs could enhance the beneficial properties of these agents in reducing PAH, in much the same way as was demonstrated by Kimura et al.2

Other possibilities for enhancing NP delivery platforms include combination therapy (encapsulating ≥2 inhibitors aimed at the same target within NPs) or packaging inhibitors aimed at ≥2 transcription factors. Developing an ideal drug delivery platform aimed at NF-κB is not trivial when one considers that there are >750 inhibitors of the NF-κB pathway, including antioxidants, peptides, small RNA/DNA, microbial and viral proteins, small molecules, and engineered dominant-negative or constitutively active polypeptides.6

Although nano-based drug delivery systems offer the potential for improved therapeutic efficacy, there are also potential risks associated with these novel treatment strategies.7 Engineered NPs are desirable because they easily enter cells and they can be designed to interact with specific cellular structures (eg, receptors) to allow for selective accumulation in particular cell types and/or in selected regions of the cell. NPs can also be designed as pH-labile structures so that they degrade within the more acidic microenvironment of the cell to release drug payloads. Biodegradable NPs that are used for drug delivery (eg, polymeric poly-[ethylene glycol]-block-lactide/glycolide copolymer NPs) generally have low toxicity but often do not persist in tissues long enough for sustained drug or gene payload delivery. As a result, more durable NPs are being explored as drug delivery platforms. A primary example is the carbon nanotube (CNT), of which versatile physicochemical features allow for covalent and noncovalent functionalization to simultaneously carry ≥3 agents: (1) a drug; (2) an imaging agent (to track the course of delivery); and (3) a specific targeting agent (eg, antibody selective for diseased tissue).8 CNTs are durable and persist in biological systems for weeks or longer. Moreover, their tube- and fiber-like structures allow for extensive functionalization and loading of cargo. Despite the potential benefits of CNTs for drug delivery, some of the same unique properties that make CNTs desirable for therapeutic applications also make them potentially toxic. Some studies have shown that CNTs cause inflammation and fibrosis when delivered to the lungs of mice or rats.7 A recent investigation by Ryman-Rasmussen et al9 showed that CNTs cause little adverse pulmonary effects when delivered to the lungs of mice by inhalation, except when the mice were challenged with an allergen. The implications of this study are that CNTs may pose a hazard to individuals with allergic lung inflammatory diseases, such as asthma. The durable nature of CNTs, along with their fiber-like shape, could also lead to persistence in the lung, which might result in asbestos-like complications. In addition to the unique example of CNTs, a number of different types of NPs can stimulate and/or suppress immune responses.10

Although most of the toxicology of NPs is focused on materials that enter the body accidentally, more attention should be given to the toxicology of NPs that are used for biomedical applications, eg, drug delivery or imaging, where the materials are deliberately placed in the body. Despite the limitations mentioned above, NPs could be modified or functionalized to reduce toxicity. For example, the compatibility of NPs with the immune system is largely determined by their surface chemistry, and modifying this factor alone could significantly reduce their immunotoxicity. Continued research such as that reported by Kimura et al to identify both risks and benefits of NP-mediated drug delivery to the lung should allow for the emergence of safe and effective strategies for the treatment of PAH and other lung diseases, including cancer, asthma, fibrosis, and chronic obstructive pulmonary disease.

Sources of Funding
This work was supported in part by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences (Z01 ES025041), and North Carolina State University College of Agricultural and Life Sciences.

Disclosures
J.W.C. is employed by Cantox Health Sciences International, a scientific consulting company with interests in safety and regulatory
aspects of nanotechnology. The remaining authors report no conflicts.

References
Nanoparticle-Mediated Drug Delivery and Pulmonary Hypertension
James C. Bonner, Jeffrey W. Card and Darryl C. Zeldin

Hypertension. published online March 23, 2009;
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/early/2009/03/23/HYPERTENSIONAHA.108.122846.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/