Intrarenal Aminopeptidase N Inhibition Restores Defective Angiotensin II Type 2–Mediated Natriuresis in Spontaneously Hypertensive Rats

Shetal H. Padia, Nancy L. Howell, Brandon A. Kemp, Marie-Claude Fournie-Zaluski, Bernard P. Roques, Robert M. Carey

Abstract—The preferred ligand of angiotensin (Ang) II type 2 (AT2Rs)–mediated natriuresis is Ang III. The major enzyme responsible for the metabolism of Ang III is aminopeptidase N, which is selectively inhibited by compound PC-18. In this study, urine sodium excretion rates (UNaV), fractional excretion of sodium, fractional excretion of lithium, glomerular filtration rate, and mean arterial pressures were studied in prehypertensive and hypertensive spontaneously hypertensive rats (SHRs) and compared with age-matched Wistar-Kyoto rats (WKYs). Although renal interstitial infusion of Ang II type 1 receptor blocker candesartan increased UNaV in WKYs from a baseline of 0.05±0.01 to 0.17±0.04 μmol/min (P<0.01), identical infusions failed to increase UNaV in hypertensive SHRs. Coinfusion of AT2R antagonist PD-123319 abolished the natriuretic responses to candesartan in WKYs, indicating an AT2R-mediated effect. AT2R-mediated natriuresis was enabled in hypertensive SHRs by inhibiting the metabolism of Ang III with PC-18 (0.05±0.01 to 0.11±0.03 μmol/min; P<0.05). The defects in sodium excretion were present before the onset of hypertension in SHRs, because young WKYs demonstrated double the UNaV of SHRs (0.04±0.006 versus 0.02±0.003 μmol/min; P<0.01) at baseline. The increased UNaV of young WKYs was attributed to reduced renal proximal tubule sodium reabsorption, because increases in fractional excretion of sodium were paralleled by increases in fractional excretion of lithium. Renal interstitial PC-18 infusion ameliorated defective AT2R-mediated natriuresis in young SHRs by increasing fractional excretion of sodium and fractional excretion of lithium without changing the glomerular filtration rate. Thus, increased renal proximal tubule sodium retention is observed before the onset of hypertension in SHRs, and inhibition of the metabolism of Ang III ameliorates this pathophysiologic defect in sodium excretion. (Hypertension. 2010;55:00-00.)

Key Words: natriuresis | angiotensin receptors | hypertension | angiotensin III | aminopeptidase N | SHR

Spontaneously hypertensive rats (SHRs) develop hypertension at ~6 weeks of age and are widely used as a model to study the development and maintenance of human genetic hypertension.1 One of the proposed mechanisms of the initiation of hypertension in SHRs involves a primary defect in renal sodium (Na+) excretion.2–4 Over time, this defect necessitates an increase in renal perfusion pressure, an adaptation that becomes central to the development and maintenance of hypertension.5,10

In normal rodents, both the intrarenal renin-angiotensin (Ang) system and the renal dopaminergic system play important roles in renal proximal tubule Na+ handling. Basal Na+ excretion rates are generally determined by the activity of the intrarenal renin-Ang system, whereas the dopaminergic system regulates Na+ excretion in response to high-salt intake. Although an acute sodium load or rise in blood pressure increases sodium excretion in normal rodents, the following 3 significant pharmacological manipulations also induce natriuresis: (1) blockade of intrarenal Ang II type 1 receptors (AT1Rs); (2) stimulation of renal dopamine D1-like receptors; and (3) activation of intrarenal Ang II type 2 receptors (AT2Rs). Recent studies have shown that natriuresis, resulting from both AT1R blockade and D1-like receptor stimulation, are mediated, at least in part, by AT2R activation, because concomitant blockade of renal AT1Rs in these situations abolishes the natriuresis.11,12 Regarding direct renal AT1R-induced natriuresis, renal interstitial (RI) Ang III, but not Ang II, results in increased Na+ excretion when AT1Rs are blocked systemically.11 This effect is also abolished by concomitant infusion of a selective AT1R antagonist, highlighting the important direct role of renal AT1R activation by Ang III in natriuresis.11

In the kidney, aminopeptidase A (APA), an enzyme normally expressed on the brush border of renal proximal tubule...
cells, is responsible for converting Ang II to Ang III. Ang III is subsequently degraded to Ang IV by aminopeptidase N (APN). Inhibition of intrarenal APN results in augmented natriuretic responses to Ang III in the presence of systemic AT₁R blockade, and natriuresis engendered by inhibition of APN is abolished by concomitant inhibition of APA. Taken together, these data suggest that renal AT₁Rs mediate natriuresis engendered by D₁-like receptor activation and AT₁R blockade and that Ang III, and not Ang II, is the preferred agonist of this response.

Thus far, studies regarding the etiology of increased Na⁺ reabsorption in young SHRs have focused on alterations in renal dopaminergic and AT₁R-mediated effects. However, as mentioned previously, D₁-like receptor–mediated natriuresis and natriuresis because of AT₁R blockade are dependent, at least in part, on renal AT₁Rs. Thus, we hypothesize that rapid metabolism of Ang III, the preferred ligand of AT₂R-mediated natriuresis, leads to abnormal Na⁺ reabsorption demonstrated previously to occur in association with the development of hypertension in the SHR. The results indicate that renal AT₁R blockade fails to induce natriuresis in hypertensive SHRs unless the degradation of Ang III is inhibited and that this defect is present before, rather than as a consequence of, established hypertension. Amelioration of AT₂R-mediated natriuresis in prehypertensive SHRs is achieved through inhibition of renal APN activity, and this effect is mediated by AT₁Rs of the renal proximal tubule.

Methods

Animal Preparation

The experiments, which were approved by the University of Virginia Animal Care and Use Committee, were conducted in 4- and 12-week-old female Wistar-Kyoto rats (WKY; Harlan) and SHRs (Taconic), in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals. Rats were placed under general anesthesia with pentobarbital (50 mg/mL) given 5 mg/100 g body weight IP. A tracheostomy was performed, and arterial access was achieved by direct cannulation of the carotid artery. Intravenous access was obtained via cannulation of the right internal jugular vein. Renal cortical interstitial infusion catheters were placed, as per the use of a least-square means pooled variance. Data comparisons among vehicle, AT₁R blocker (candesartan), AT₂R blocker (PD), and PC-18 (APN inhibitor) were estimated by ANOVA, including a repeated-measures term, by using the general linear models procedure of SAS (version 9.1, SAS Institute, Inc). Multiple comparisons of individual pairs of effect means were conducted by the use of a least-square means pooled variance. Data are expressed as mean ± SE. Statistical significance was identified at p<0.05.

Results

Effects of RI AT₁R Blockade, RI AT₁R Blockade+APN Inhibition, and RI AT₁R Blockade+APN Inhibition+AT₂R Blockade on U_NaV, GFR, FENa, F_ELi, and MAP

Four- and 12-week-old WKys and SHRs were studied on normal Na⁺ intake (N = 6 per group) 72 hours after uninephrectomy. The remaining kidney was then infused for 1 hour with 5% dextrose in water (D5W), designated as the control period in Figure 1. After the control period, the kidney was infused with 1 of the following: (1) D5W at 2.5 μL/min; (2) candesartan (0.01 mg/kg per minute); (3) candesartan + PD (10 μg/kg per minute); (4) candesartan + PC-18 (25 μg/min); or (5) candesartan + PC-18 + PD directly into the RI space during 3 consecutive 1-hour experimental periods. Inulin and lithium chloride in D5W were infused throughout the study via an internal jugular catheter. UNaV, GFR, FENa, F_ELi, and MAPs were calculated and/or recorded for each period.

Measurement of Glomerular Filtration Rate, Fractional Excretion of Sodium, and Fractional Excretion of Lithium

Urinary and plasma Na⁺ and Li⁺ concentrations were measured using a flame photometer (Instrumentation Laboratory 943). Glomerular filtration rate (GFR) was measured by inulin clearance using a method described previously. Tubular Na⁺ reabsorption was determined by calculating the fractional excretion of sodium (FENa), and renal proximal tubule Na⁺ reabsorption was estimated using fractional excretion of lithium (FELi), as published previously.

Effects of RI AT₁R Blockade, RI AT₁R Blockade+APN Inhibition, and RI AT₁R Blockade+APN Inhibition+AT₂R Blockade on U_NaV, GFR, FENa, F_ELi, and MAP

Four- and 12-week-old WKys and SHRs were studied on normal Na⁺ intake (N = 6 per group) 72 hours after uninephrectomy. The remaining kidney was then infused for 1 hour with 5% dextrose in water (D5W), designated as the control period in Figure 1. After the control period, the kidney was infused with 1 of the following: (1) D5W at 2.5 μL/min; (2) candesartan (0.01 mg/kg per minute); (3) candesartan + PD (10 μg/kg per minute); (4) candesartan + PC-18 (25 μg/min); or (5) candesartan + PC-18 + PD directly into the RI space during 3 consecutive 1-hour experimental periods. Inulin and lithium chloride in D5W were infused throughout the study via an internal jugular catheter. UNaV, GFR, FENa, F_ELi, and MAPs were calculated and/or recorded for each period.

Statistical Analysis

Comparisons among vehicle, AT₁R blocker (candesartan), AT₂R blocker (PD), and PC-18 (APN inhibitor) were estimated by ANOVA, including a repeated-measures term, by using the general linear models procedure of SAS (version 9.1, SAS Institute, Inc). Multiple comparisons of individual pairs of effect means were conducted by the use of a least-square means pooled variance. Data are expressed as mean ± SE. Statistical significance was identified at p<0.05.

Results

Effects of RI Candesartan Infusion and Candesartan+PD Infusion on U_NaV and MAP in 12-Week-Old WKys and SHRs

As demonstrated in Figure 1A, in WKys, RI candesartan increased U_NaV from a baseline of 0.05 ± 0.01 to 0.16 ± 0.03 μmol/min (P < 0.0001) during experimental period 2 and to 0.17 ± 0.04 μmol/min (P < 0.01) during experimental period 3. PD coinfusion abolished the natriuretic responses to RI candesartan in WKys. In 12-week-old SHRs, however, identical infusions of candesartan failed to increase U_NaV (baseline: 0.04 ± 0.01 to 0.03 ± 0.01 μmol/min after 3 hours of candesartan infusion; P value not significant). As illustrated in Figure 1B, SHRs had higher MAP values compared with WKys at baseline, but RI candesartan infusion did not significantly alter baseline MAP values in WKys or SHRs. Similarly, coinfusion of PD with candesartan did not influence MAP in WKys.

Effects of RI Candesartan±APN Inhibition on U_NaV and MAP in 12-Week-Old Hypertensive SHRs

Figure 2A demonstrates that candesartan+PC-18 infusion increased U_NaV from a baseline value of 0.05 ± 0.01 to 0.10 ± 0.02 μmol/min (P < 0.05) during experimental period 1 to 0.12 ± 0.02 μmol/min (P < 0.01) during experimental pe-
Effects of RI Candesartan±APN Inhibition on UNaV and MAP in 4-Week–Old WKYs and Prehypertensive SHRs

After RI candesartan infusion, 4-week–old WKYs demonstrated an increase in UNaV from a baseline value of 0.05±0.01 to 0.15±0.02 μmol/min (P<0.05) after 3 hours of candesartan infusion (Figure 5A). The increase in UNaV was abolished by coinfusion of PD. In 4-week–old SHRs, RI candesartan infusion failed to increase UNaV. However, as demonstrated in Figure 5A, RI infusion of PC-18, an inhibitor of APN, enabled natriuretic responses to RI candesartan in 4-week–old SHRs by increasing UNaV from a baseline value of 0.02±0.002 to 0.30±0.020 μmol/min (P<0.01). RI AT-R blockade with PD abolished PC-18–enabled natriuresis in 4-week–old SHRs. MAP values remained unchanged in 4-week–old WKYS or SHRs in response to RI candesartan±PC-18±PD (Figure 5B).

Renal Function Studies in 4-Week–Old WKYS and Prehypertensive SHRs in Response to Natriuretic Stimuli

In 4-week–old WKYS, RI candesartan increased FENa (Figure 6B) and FELi (Figure 6C) from baseline values of 0.16±0.02% and 12.40±1.10% to 0.31±0.03% (P<0.01) and 26.00±2.40% (P<0.001), respectively. RI AT-R blockade failed to induce changes in GFR (Figure 6A) in these

Baseline Renal Function Studies on 4-Week–Old WKYS and Prehypertensive SHRs

Figure 3A demonstrates reduced UNaV in 4-week–old prehypertensive SHRs compared with WKYS after 4 hours of vehicle infusions of RI D5W (0.02±0.003 versus 0.04±0.006 μmol/min, respectively). MAP values were not significantly different between 4-week–old WKYS and SHRs, with average values over 4 hours of 120.3±4 and 120.0±4 mm Hg, respectively (Figure 3B). Figure 4A demonstrates that 4-week–old WKYS and SHRs have similar GFRs after 4 hours of vehicle infusions of RI D5W (0.51±0.04 and 0.45±0.08 mL/min per gram of kidney weight, respectively). However, compared with 4-week–old SHRs, age-matched WKYS demonstrated significantly higher FENa (0.16±0.02% versus 0.09±0.01%; P<0.05; Figure 4B) and FELi (11.7±0.9% versus 7.7±0.9%; P<0.01; Figure 4C).
Discussion

One of the proposed mechanisms of the initiation of hypertension in SHRs and humans involves a fundamental defect in the capacity of the kidney to excrete Na\(^+\). Over time, a compensatory increase in renal perfusion pressure permits proper Na\(^+\) excretion but also renders the animal hypertensive. Supporting this theory are the observations that transplantation of prehypertensive kidneys from SHRs to WKYs produces hypertension in WKYs\(^{23}\) and that human subjects with genetic hypertension\(^{24}\) and SHRs\(^{25,26}\) excrete less Na\(^+\) and water than normotensive controls when renal perfusion pressure is lowered to normotensive levels. Chronic relationships between arterial pressure and urinary Na\(^+\) and water output are also shifted toward higher pressures in SHRs compared with WKYs, reflecting the kidney’s adaptation to a higher perfusion pressure.\(^{27}\)

In the present study, we hypothesized that AT\(_2\)R-mediated natriuresis is dysfunctional in SHRs because of rapid inactivation of the preferred ligand, Ang III. The major results provide insight into both the site and mechanisms of defective natriuresis in SHRs and are summarized as follows: (1) although selective intrarenal AT\(_1\)R blockade induces significant AT\(_2\)R-mediated natriuresis in 12-week–old WKYs, identical infusions fail to do so in age-matched hypertensive SHRs; (2) defective natriuresis is present in 4-week–old SHRs before the onset of hypertension, and this occurs at the level of the renal proximal tubule; (3) inhibition of the activity of APN, the enzyme responsible for the degradation of Ang III, permits AT\(_2\)R-mediated natriuresis in both 4- and 12-week–old SHRs; and (4) in 4-week–old SHRs, the natriuresis engendered by PC-18 occurs at the level of the renal proximal tubule.

Previous studies have shown that RI AT\(_1\)R blockade with candesartan induces natriuresis that is mediated by renal AT\(_2\)Rs in 12-week–old Sprague-Dawley rats.\(^{11}\) These results are not specific for the Sprague-Dawley strain, because the present study demonstrates similar AT\(_2\)R-mediated natriuresis in response to RI candesartan infusion in WKYs. The absence of MAP changes during RI AT\(_1\)R blockade in WKYs indicates that the observed natriuresis is because of direct intrarenal, and not systemic hemodynamic, factors. Low-dose candesartan has been reported previously to increase U\(_{Na}V\) without affecting MAP values in WKYs when administered systemically,\(^{28}\) and the results of this study demonstrate that direct RI candesartan infusion at low doses has the same effect.

In comparison, 12-week–old SHRs fail to demonstrate an increase in U\(_{Na}V\) after RI candesartan infusion. To investi-
gate whether the lack of response was a consequence of established hypertension; both basal and stimulated natriuretic responses were assessed in young, 4-week-old prehypertensive SHRs. Baseline U_{\text{Na}}V was significantly reduced in young SHRs compared with age-matched WKYs, a finding that has been reported previously.6,29 However, in the present study, a defect in stimulated natriuresis, that is, in response to AT, R blockade, was also observed in young SHRs. Thus, not only is baseline Na⁺ excretion impaired before hypertension is established, but beneficial natriuretic responses mediated by renal AT, Rs are also compromised before hypertension develops in these animals. The preferred ligand of AT, R-mediated natriuresis in normal rodents is Ang III, not Ang II.11,14 APN is the major enzyme responsible for the metabolism of Ang III in the kidney13 and is expressed on brush border (apical) membranes of renal proximal tubule cells and enterocytes.31 One of the first in vivo studies using PC-18 to inhibit the activity of APN was conducted in mice.19 During which intracerebroventricular administration of PC-18 resulted in a 3.9-fold increase in the half-life of Ang III compared with control. The in vitro specificity of PC-18 toward APN, APA, and aminopeptidase B, 3 zinc metalloproteases with significant identity between their amino acid sequences, was also tested.19 The inhibition constant values of this compound for APN were in the nanomolar range.

Figure 5. Direct RI infusion of candesartan, an AT, R antagonist, induces natriuresis in 4-week-old WKYs but not SHRs. The natriuresis is blocked by PD, an AT, R antagonist. RI coinfusion of candesartan+PC-18, an inhibitor of APN, engenders natriuresis in 4-week-old SHRs, and this is also blocked by PD. A, ■ (n=6) indicates U_{\text{Na}}V in WKYs in response to RI infusion of candesartan. □ (n=8) indicates U_{\text{Na}}V in WKYs in response to RI coinfusion of candesartan+PD. ■ (n=7) indicates U_{\text{Na}}V in SHRs in response to RI infusion of candesartan. □ (n=8) indicates U_{\text{Na}}V in SHRs in response to RI coinfusion of candesartan+PC-18. □ (n=8) indicates U_{\text{Na}}V in SHRs in response to RI coinfusion of candesartan+PC-18+PD. A, Data represent mean±1 SE; *P<0.05 and **P<0.01 from the respective control period.

Figure 6. Renal function studies on 4-week-old WKYs and SHRs after the RI infusion of candesartan with and without PC-18. A, ■ (n=11) indicates GFR in WKYs in response to RI infusion of candesartan. □ (n=10) indicates GFR in SHRs in response to RI infusion of candesartan. B, FE_{\text{Na}} responses to conditions in A. C, FE_{\text{Li}} responses to conditions in A. Data represent mean±1 SE; *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001 from the respective control period.
reduce renal APN activity in renovascular hypertension, and chronic ARB administration may influence APN activity in SHR as well.

The nephron site at which AT$_2$R-mediated natriuresis is stimulated in 4- and 12-week-old WKYs and is defective in young SHRs is the renal proximal tubule. Previous studies have validated the use of the Fe$_{Li}$ as a marker of renal proximal tubule Na$^+$ transport in both WKYs and SHRs. In all of our studies, tubule events distal to the renal proximal tubule would have been detected by changes in Fe$_{Na}$ that were not accompanied by parallel changes in Fe$_{Li}$. However, this was not the case in the baseline sodium excretion rates in young SHRs or the stimulated natriuresis in WKYs or SHRs.

Thus far, studies regarding the mechanisms of increased renal proximal tubule Na$^+$ reabsorption in young SHRs have focused on alterations in renal dopaminergic and AT$_1$R-mediated effects. In the renal proximal tubule, increased activities of apical membrane sodium-hydrogen exchanger 3 and basolateral membrane sodium-potassium ATPase are associated with increased Na$^+$ reabsorption. In young SHRs, the ability of the dopamine D$_1$-like receptor to inhibit sodium-hydrogen exchanger 3 or sodium-potassium ATPase is impaired because of an uncoupling of the D$_1$-like receptor from its G-protein/effecter complex. Furthermore, increased renal proximal tubule AT$_1$R expression, elevated renal Ang II content, and increased Ang II-AT$_1$R-mediated activation of sodium-hydrogen exchanger 3 have also been suggested as possible contributors to the excess Na$^+$ retention of young SHRs. However, as mentioned previously, D$_1$-like receptor-mediated natriuresis and natriuresis because of AT$_1$R blockade are mediated, at least in part, by renal AT$_2$Rs.

Thus, the direct characterization of the natriuretic role of renal proximal tubule AT$_2$Rs in this study, both in normal rodents and SHR, for which sodium reabsorption actually contributes to the pathogenesis of the disease, permits a deeper understanding of the mechanisms underlying the initiation of hypertension in this model. The provision of APN as a potential therapeutic target for the amelioration of hypertension in SHRs will be addressed in future studies.

Perspectives

In both SHRs and hypertensive humans, increased Na$^+$ reabsorption contributes to the eventual onset of genetic hypertension. To date, the only published studies examining the increased Na$^+$ reabsorption of young prehypertensive SHRs have focused on 2 defects, elevated renal Ang II content causing increased Na$^+$ retention via the AT$_1$R and functional hyposensitivity of renal proximal tubule cells to dopamine resulting in decreased Na$^+$ excretion. The recently elucidated roles of the renal AT$_2$R and Ang III in the natriuretic responses of nonhypertensive rodents have become important to our understanding of the mechanisms that permit Na$^+$ excretion in normal animals. The present study investigated the role of AT$_2$Rs in natriuresis in young SHRs and identified a potentially compelling therapeutic target to overcome early defects in renal proximal tubule Na$^+$ excretion in the initiation of hypertension.

Sources of Funding

This work was supported by National Institutes of Health grants K08-HL-093353 to S.H.P. and R01-HL-081891 and R01-HL-087998 to R.M.C.

Disclosures

None.

References

32. Kemp BA, Keller SR, Padia SH. Renal aminopeptidase N expression is increased in SHR [abstract]. Presented at the American Heart Association Council for High Blood Pressure Research Annual Scientific Meeting; September 17–20, 2008; Atlanta, GA.

Intrarenal Aminopeptidase N Inhibition Restores Defective Angiotensin II Type 2–Mediated Natriuresis in Spontaneously Hypertensive Rats
Shetal H. Padia, Nancy L. Howell, Brandon A. Kemp, Marie-Claude Fournie-Zaluski, Bernard P. Roques and Robert M. Carey

Hypertension. published online December 7, 2009;
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/early/2009/12/07/HYPERTENSIONAHA.109.144956.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/