Brief Review

Endogenous Ouabain Is Not Ouabain

Lynley K. Lewis, Timothy G. Yandle, Philip J. Hilton, Berit P. Jensen, Evan J. Begg, M. Gary Nicholls

The concept of a circulating digitalis-like inhibitor of the sodium pump, Na+, K+-ATPase, evolved from studies performed in the 1960s. De Wardener et al1 addressed the question of whether a small increase in the glomerular filtration rate together with changes in the concentration of the more recently discovered hormone aldosterone could explain the natriuresis that generally followed salt (sodium) loading. In their studies, dogs had their renal blood flow reduced significantly by constricting the aorta above the renal arteries and were given supramaximal doses of fludrocortisone, a synthetic analogue of aldosterone, and vasopressin before being challenged with intravenous saline. Their ability to develop a natriuresis clearly demonstrated that the responsible agent could be transmitted by the plasma of the volume-expanded animal.2 Although we may now ask whether in these experiments the effect was mediated, at least in part, by the release of atrial and B-type natriuretic peptide from the heart, it was nearly 2 decades before those hormones were discovered during which time it was demonstrated that the plasma of volume-expanded animals had the ability to inhibit the sodium pump—which is not a target of atrial natriuretic peptide and B-type natriuretic peptide. Essentially parallel studies were performed by Welt and colleagues4 in uremia where inhibition of the sodium pump of erythrocytes was demonstrated along with the ability of uremic plasma to induce such a defect in normal erythrocytes.

In 1975, it was shown that patients with essential hypertension had, as a group, reduced activity of the sodium pump of leukocytes, with corresponding elevated values for intracellular sodium.5 This finding proved to be reproducible in various laboratories, and once again the effect was transmissible by exposing normal cells to the plasma of hypertensives. It was also shown that there was a crude correlation between the elevated blood pressure and the depression of the activity of the sodium pump as measured by the efflux rate constant.6 It was then clear that under certain conditions humans and other animals had the ability to secrete an inhibitor of the sodium pump and that this may well be of importance in the physiology/pathophysiology of salt overload, uremia, and essential hypertension.

Long overdue is a review of De Wardener’s third factor and the proposition that it or a similar compound acts by inhibition of the sodium pump in a manner akin to digitalis and related materials, and that this compound plays a role under physiological circumstances and in the pathophysiology of cardiovascular and renal disorders. In the current brief review, we have focussed on a narrow component of this broad field: the question of whether, as claimed below, authentic ouabain or an isomer of ouabain is present in human circulation.

By the late 1970s, the reasonable question was that, given the repeated demonstration of the phenomena noted above, what was the circulating agent involved? Despite investigations from many laboratories, the identity of the inhibitor compound(s) remained elusive until 1991 when Hamlyn and colleagues from the Upjohn Laboratories in Kalamazo, Michigan, and the Department of Physiology at the University of Maryland addressed this issue by concentrating large volumes of human plasma and subjecting them to liquid chromatography coupled to mass spectrometry. In that year, they produced a series of articles suggesting convincingly that their highly concentrated sample contained an inhibitor of Na+, K+-ATPase that was structurally, biochemically, and immunologically indistinguishable from ouabain or an isomer of ouabain.7-10 These workers went on to show that their isolated material had cardiotonic and vasotonic activity similar to authentic plant-derived ouabain.11 They also developed an immunoassay for measurement of ouabain in plasma.9 The Lancet greeted these reports with an editorial article entitled “Welcome to Ouabain – a New Steroid Hormone.”12 Two studies thereafter reported that endogenous ouabain (EO), as has become the common term, was secreted by bovine zona glomerulosa cells from the adrenal cortex under the control of adrenocorticotropic hormone and angiotensin II, the latter via angiotensin type II receptors.13-15

A different approach to the isolation of a circulating inhibitor of the sodium pump in humans was also pursued. Following on from a criminal trial in Canada in which a nurse was accused of causing the death of a newborn when digoxin was discovered in the plasma despite the drug never having been prescribed, Valdes et al16 observed that immunoassayable digoxin was regularly present in neonatal plasma. Because it was unlikely (although not impossible) that the immunoassay was measuring authentic digoxin, this could imply that cord blood contained a sodium pump inhibitor. Following this lead, our group in London saw weak sodium pump inhibitory action in a large series of cord blood samples17; however, the amounts were...
insufficient to characterize the material from that source. We argued that the likely target of the inhibitor was the placenta and attempted to extract it from this source. Multiple extractions yielded an inhibitory fraction, which, when examined by mass spectrometry, revealed a compound of mass 370 Da running in positive ion mode as material of m/z 371 (protonated), 393 (sodiated), and 409 (potassiated). Accurate mass studies indicated an empirical formula of $C_{24}H_{34}O_{3}$, and the mass spectrometer in negative ion mode showed fragmentation to a compound of m/z 97 and subsequently 80. Allowing that this ion was neither a sulfate nor a phosphate resulted in the view that it represented the loss of a dihydroprone from the original compound, suggesting that it was a bufenolide. In multiple placental tissue extractions, which showed inhibition of the sodium pump, no trace of ouabain was ever seen on mass spectrometry. Both this study and that of Hamlyn were conducted using fast atom bombardment ionization coupled with traditional magnetic sector detectors, which were considered state-of-the-art equipment at the time but, as described below, have since been repeatedly superseded in sensitivity and ease of use.

On the assumption that the ion seen by Hamlyn and colleagues was indeed ouabain, an immunnoassay to this compound was developed and commercialized by Du Pont–New England Nuclear. Using this or similar immunoassays, at least 13 research groups reported plasma levels of immunoreactive ouabain in healthy volunteers, which, as we noted in an earlier article, varied widely between 2.5±0.5 (mean±SEM) nmol/L (and up to 176±68 nmol/L with exercise) and undetectable. The plasma levels (and especially those achieved with exercise) reported by some groups would likely prove fatal if indeed the measured compound was authentic ouabain. With regard to these wide variations in reported levels of plasma ouabain, it is important to keep in mind the potential pitfalls of immunoassays. In particular, cross-reactivity is an ever-present risk. For example, it is possible to quote a plasma concentration of prednisolone using an immunoassay for cortisol and factoring in the known cross-reactivity and near certainty that high-dose prednisolone administration will almost totally inhibit cortisol secretion in most circumstances. Along similar lines, we have had the opportunity to study an antibody raised against ouabain that gave significant concentrations to the sodium pump in human needed either to be put on a more secure footing or to lose its current status.

So what advances have been made since the debate in 2009? We think there are 3 noteworthy observations to be made. First, there has been no substantial progress to address the question as to whether or not immunoreactive EO is produced by the adrenal glands in humans, and an adrenal biosynthetic pathway for EO remains to be established. The observations by 2 research groups in the mid-1990s, which disputed an adrenal origin for immunoreactive ouabain, remain unchallenged. Some 23 years after the existence of EO was reported and in an age when the entire genome is sequenced and genes can be identified computationally, their adrenal biosynthetic pathway remains undiscovered. This raises questions regarding the biosynthetic machinery. Furthermore, involvement in mammalian metabolism of rhamnose, the sugar moiety of ouabain, is most unusual. Second, as mentioned already, articles continue to be published largely but not exclusively by workers at the University of Maryland and their colleagues claiming that EO not only exists but is of pathophysiological importance. It is a rare article amongst such papers that makes mention, even in passing, that there is some uncertainty.
regarding the structure and source of EO. Third and most importantly, as discussed below, recent evidence from German workers using techniques not available in the early 1990s contradicts the original reports in 1991 that authentic ouabain exists in human plasma.

As an aside and in relation to the potential pathophysiological role of EO, it is worthy of note that, whereas some researchers have reported clearcut biological effects of administered authentic ouabain in various animal models and human, in particular to raise arterial pressure, other workers, including those in Christchurch, have failed to see such effects. In this regard and as summarized by Ferrari et al, the drug rostafuroxin that selectively displaces ouabain from the Na+, K+-ATPase receptor has been reported to lower arterial pressure in Milan hypertensive rats and select humans, and in deoxycorticosterone acetate salt hypertensive rats, it reduced blood pressure while also ameliorating endothelial dysfunction and oxidative stress in resistance arteries. These observations raised the possibility that if indeed EO exists and contributes to the development or maintenance of hypertension, inhibitors of EO mechanisms of action might provide a new class of antihypertensive drugs. When compared with placebo, however, rostafuroxin had no effect on systolic or diastolic pressure (using both office and 24-hour ambulatory recordings), plasma renin activity, 24-hour urinary sodium, and aldosterone excretion or plasma immunoreactive EO levels in 435 patients with systolic hypertension, although a subset of patients with a specific genetic profile was said to have shown an antihypertensive effect (data not shown). Although the outcome of this trial does not disprove the existence and pathophysiological importance of EO in the majority of patients with essential hypertension, it does not support the underlying premise. Additional studies are underway on the effects of rostafuroxin on arterial pressure in a subgroup of essential hypertensive patients with a specific genetic profile.

Returning to the issue of whether or not authentic ouabain exists in the human circulation, mass spectrometry has undergone a series of remarkable changes since the early 1990s, particularly in its sensitivity or limit of detection. It is now possible using these purely physical techniques to detect a molecule such as ouabain down to below even the lowest (nonzero) concentrations previously reported by immunologic assays. A recent article from workers in Germany has documented their attempt to do just that using state-of-the-art mass spectrometry. Their technique was rigorously validated and benefited from an internal standard of D3 ouabain where 3 of the hydrogen atoms are replaced by deuterium, giving a compound like factor from human plasma for structural analysis. Hypertension. 1991;17(6 Pt 2):923–929.

Endogenous Ouabain Is Not Ouabain
Lynley K. Lewis, Timothy G. Yandle, Philip J. Hilton, Berit P. Jensen, Evan J. Begg and M. Gary Nicholls

Hypertension. published online July 7, 2014;
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/early/2014/07/07/HYPERTENSIONAHA.114.03919.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/