Denervation of the Renal Arteries in Metabolic Syndrome
The DREAMS-Study

Willemien L. Verloop, Wilko Spiering, Eva E. Vink, Martine M.A. Beefink, Peter J. Blankestijn, Pieter A. Doevendans, Michiel Voskuil

Abstract—Chronic elevation of sympathetic nervous system is a key factor in metabolic syndrome. Because renal denervation (RDN) is thought to modulate sympathetic activity, we performed the Denervation of the Renal Arteries in Metabolic Syndrome (DREAMS)—study to investigate the effects of RDN on insulin sensitivity and blood pressure (BP) in patients with metabolic syndrome. Twenty-nine patients fulfilling the criteria for metabolic syndrome and who used a maximum of 1 antihypertensive or 1 antidiabetic drug or 1 of both gave informed consent and were treated by RDN. Glucose tolerance tests and 24-hour ambulatory BP measurements were performed at baseline, at 6 and 12 months of follow-up. Moreover, we performed self-monitored BP measurements at home every month. To assess sympathetic activity, we performed muscle sympathetic nerve activity and heart rate variability measurements at baseline and follow-up. The majority of the included patients was men (57%), mean body mass index was 31±5 kg/m². Median insulin sensitivity as assessed by the Simple Index assessing Insulin Sensitivity oral glucose tolerance test did not change at 6- and 12-month follow-up (P=0.60 and P=0.77, respectively). Mean 24-hour BP decreased by 6±2.5±7 mm Hg 12 months after RDN (P=0.04/0.01). However, self-monitored BP measurements data showed no reduction over time. Measurements of sympathetic activity showed no reduction in systemic sympathetic activity. In conclusion, RDN did not lead to a significant improvement of insulin sensitivity ≤12 months after treatment. Although a significant reduction in ambulatory BP was observed in this nearly drug-naïve population, the self-monitored BP measurements data suggest that this may be explained by regression to the mean. Moreover, no effect in systemic sympathetic activity was observed. (Hypertension. 2015;65:00-00. DOI: 10.1161/HYPERTENSIONAHA.114.04798.) ● Online Data Supplement

Key Words: blood pressure ■ insulin resistance ■ metabolic syndrome X ■ renal denervation ■ sympathetic nerve activity

Metabolic syndrome (MetS) is a cluster of metabolic features that is associated with a 2-fold increased risk of cardiovascular disease. According to the statement of the American Heart Association, MetS is defined as the presence of ≥3 of the following 5 features: abdominal obesity, hyperglycemia, hypertension, hypertriglyceridemia, and low high-density lipoprotein cholesterol levels. MetS is a worldwide problem with a high prevalence, being 22.9% of the US adult population in 2010. Hypertension as a part of MetS is often resistant to usual antihypertensive drugs, and patients have an increased risk to develop diabetes mellitus type 2.

Chronic elevation of activity of the sympathetic nervous system is common in MetS and has been identified by preclinical and clinical studies as being a key factor in MetS. The renal sympathetic nerves are a major contributor to the pathophysiology of elevated sympathetic nerve activity (SNA). Percutaneous renal denervation (RDN) has been developed as a new therapy to lower SNA. First and foremost, RDN was designed to lower blood pressure (BP) in patients with resistant hypertension. Although the first studies were promising, the sham-controlled, double-blind HTN-3 trial showed no significant differences in BP-response between the treated group and the sham-group. In a retrospective analysis, the effects of RDN on insulin sensitivity (IS) have been assessed in hypertensive patients. Measures of IS significantly improved after RDN. However, the population was a heterogeneous hypertensive population, including patients with a normal glucose level.

In the current prospective study, we aimed to investigate the effects of RDN on IS and BP in a nearly drug-naïve population with MetS. We hypothesized that RDN would have a positive effect on both IS and BP. To evaluate the effect of RDN on sympathetic activity, we performed muscle SNA (MSNA) and heart rate variability (HRV) as secondary end points.
Methods

The current study was designed as a prospective cohort (pilot) study (NCT01465724). The local ethics review committee of the University Medical Center Utrecht approved the study in accordance with the Declaration of Helsinki and Title 45, US Code of Federal Regulations, Part 46, Protection of Human Subjects. All participants provided written informed consent. Patients were treated between March 2012 and August 2013 with follow-up planned after 6 and 12 months.

Study Population

Eligible patients were aged >18 years, had the combination of a high fasting glucose, hypertension, and one other metabolic feature to fulfill the criteria for MetS. Hypertension was defined as a 24-hour ambulatory systolic BP (SBP) >130 mmHg. High fasting glucose was defined as ≥5.6 mmol/L (≥100 mg/dL). Patients used a maximum of 1 antidiabetic or 1 antihypertensive drug at baseline. Before treatment, patients were screened using a standardized protocol as previously described. During the screening at baseline and at the follow-up visits, detailed information on medication use was obtained and physical examination was performed. Questionnaires were given to participants to inform about physical activity at that moment. To observe the net effect of RDN, we temporarily stopped antihypertensive or antidiabetic drugs (when used) during the baseline and follow-up visits according to protocol when considered safe. This resulted in drug-naive patients during the baseline and follow-up visits.

Glucose Tolerance Test

At baseline and during both follow-up visits, a standard 75-g glucose tolerance test (GTT) was performed with plasma samples obtained at 0, 30, 60, 90, and 120 minutes after the glucose load. The primary end point was change in IS assessed with the formula of the Simple Index assessing IS Oral GTT (SIisOGTT). SIisOGTT was calculated as: \( SI\text{isOGTT}=\frac{1}{\log [\text{glucose}]} \) 0-30-90-120 [IU/∑t mL]. In addition, homeostasis model of assessment-insulin resistance (HOMA-IR) was calculated as: \( \text{HOMA-IR}=\frac{\text{glucose } t_0 \times \text{insulin } t_0}{[\text{mmol/L}] \times [\text{µU/mL}]/(22.5)^2} \).

BP Monitoring

At baseline and 6 and 12 months after RDN, ambulatory 24-hour BP measurements (ABPM) and office BP measurements were taken (online-only Data Supplement). Moreover, we measured self-monitored BP measurements (SBPM) at home (online-only Data Supplement) according to the European Society of Hypertension guidelines. SBPM was performed using an automated WatchBP Home device (Microlife Inc, Widnau, Switzerland).

Sympathetic Nerve Activity

To obtain information about SNA, we performed MSNA and HRV measurements at baseline and during follow-up. The MSNA measurements were offered as a subset for which patients had to give informed consent separately. MSNA measurements were performed at baseline and at 6-month follow-up similar to the methods recently described in detail online (online-only Data Supplement). MSNA is expressed as the number of bursts of sympathetic activity per minute and as the number of bursts per 100 heart beats to correct for differences in HR.

HRV testing was performed using an applation tonometer interface with HRV software (Sphygmocor; Atcor Medical Systems Inc, Sydney, Australia). The outcomes of HRV measurement were frequency domain parameters: high-frequency (HF) spectral power component of HRV (measured in absolute units, ms²), low frequency (LF), total power, and the LF:HF ratio. HF generally represents parasympathetic activity, LF is influenced by both sympathetic and parasympathetic activity. The ratio of LF:HF represents the balance of parasympathetic and sympathetic activity.

Safety

At baseline and during follow-up visits, special attention was paid to occurrence of (serious) adverse events and patients were instructed to report any adverse event spontaneously. Renal function was assessed at baseline and during follow-up. The estimated glomerular filtration rate was calculated using the Chronic Kidney Disease Epidemiology Collaboration formula.

Renal Denervation

Patients were treated using the Symplicity Flex device (Medtronic, Minneapolis, MN) as previously described (online-only Data Supplement). A control angiography was performed after the procedure.

Statistical Analysis

A sample size calculation was performed for the primary end point (SIisOGTT) on foreground. On the basis of available literature, we expected a mean difference after treatment of 0.4±0.7. The desired power was set at 0.80, α (type I error) was set at 0.05. This yielded a sample size of 27 patients. To make sure that the study was not underpowered, we aimed to include 30 patients.

All variables were reported as means±SD, median (interquartile range), or proportion when appropriate. The changes in IS and BP were calculated 6 and 12 months after RDN. A positive value in SIisOGTT represents an improvement in IS. A negative value in BP, glucose, insulin, HOMA-IR, MSNA, or HRV represents an improvement. The Student t test or Wilcoxon signed-rank test was used for paired sample analysis when appropriate.

For analysis of the SBPM, we used linear mixed models (LMM) to evaluate the effect on BP over time. The effect over time is presented as means±SD, median (interquartile range), or proportion when appropriate. We performed LMM with a random intercept and random slope or a random intercept alone (depending on the lowest Akaike information criterion value) to model changes of SBP, diastolic BP, mean arterial pressure, and HR over time. Subsequently we adjusted the models for baseline factors (sex, age) or change in daily unit, change in BMI, or change in estimated glomerular filtration rate. A 2-sided P value of <0.05 was considered to be statistically significant. All analyses were performed with the SPSS statistical package version 20 (IBM SPSS Data Collection, Chicago, IL).

Results

Patient Characteristics

Twenty-nine patients were included in the current study and fulfilled the inclusion criteria. The baseline characteristics are listed in Table 1. Most patients were men with a mean age of 60±9 years. Thirty-four percent (n=10) of patients did not use any antihypertensive drugs at baseline, 74% of patients (n=25) did not use any antidiabetic drugs at baseline. All included patients were white. Multiple renal arteries were observed in 9 (31%) patients. In 4 patients, the multiple arteries were of sufficient size for RDN and therefore all arteries were treated; in 5 patients, only the main arteries at both sides were treated. During RDN, a mean number of 14.3±3.1 ablations were applied per patient.

During follow-up, BMI and waist circumference did not change as shown in Table 2. The use of antihypertensive drugs also remained stable during follow-up (Table 2). Physical activity did not change during follow-up (P=0.43).
Table 1. Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All Patients (n=29)</th>
<th>HRV Subpopulation (n=26)</th>
<th>MSNA Subpopulation (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>60±9</td>
<td>59±9</td>
<td>54±8</td>
</tr>
<tr>
<td>Sex (men/women)</td>
<td>17/12</td>
<td>16/10</td>
<td>6/4</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>31.5±5.0</td>
<td>31.8±5.0</td>
<td>32.7±4.8</td>
</tr>
<tr>
<td>eGFR, ml/min per 1.73 m²</td>
<td>85±15</td>
<td>84±14</td>
<td>93±11</td>
</tr>
<tr>
<td>Fasting glucose, mmol/L</td>
<td>7.2±1.7</td>
<td>7.0±1.1</td>
<td>7.6±2.4</td>
</tr>
<tr>
<td>Fasting insulin, mIU/L</td>
<td>20.9±10.6</td>
<td>22.2±10.4</td>
<td>18.2±10.6</td>
</tr>
<tr>
<td>Fasting C-peptide, pmol/L</td>
<td>1316±403</td>
<td>1358±401</td>
<td>1281±475</td>
</tr>
<tr>
<td>Office SBP, mmHg</td>
<td>162±19</td>
<td>162±20</td>
<td>154±17</td>
</tr>
<tr>
<td>Office DBP, mmHg</td>
<td>98±10</td>
<td>96±10</td>
<td>93±10</td>
</tr>
<tr>
<td>Mean 24-h SBP, mmHg</td>
<td>145±12</td>
<td>145±12</td>
<td>144±12</td>
</tr>
<tr>
<td>Mean 24-h DBP, mmHg</td>
<td>89±10</td>
<td>89±10</td>
<td>91±11</td>
</tr>
<tr>
<td>Mean 24-h PP, mmHg</td>
<td>56±8</td>
<td>56±8</td>
<td>54±6</td>
</tr>
<tr>
<td>Mean 24-h HR, bpm</td>
<td>75±7</td>
<td>76±9</td>
<td>73±9</td>
</tr>
<tr>
<td>SIisOGTT</td>
<td>0.243±0.022</td>
<td>0.242±0.021</td>
<td>0.250±0.023</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>6.6±3.5</td>
<td>6.9±3.5</td>
<td>6.1±3.8</td>
</tr>
</tbody>
</table>

Comorbidity

| Diabetes mellitus type II         | 5 (17%)             | 4 (15%)                  | 2 (20%)                   |
| CAD                              | 3 (10%)             | 3 (11%)                  | 1 (10%)                   |

Use of antihypertensive- and antidiabetic drugs

| Patients using no antihypertensives | 10 (34%) | 9 (35%) | 5 (50%) |
| Patients using no antidiabetics     | 25 (74%) | 22 (85%) | 9 (90%) |

Continuous variables are displayed as a mean (SD); categorical variables are displayed as a number (percentage). CAD indicates coronary artery disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HOMA-IR, homeostasis model of assessment-insulin resistance; HRV, heart rate variability; MSNA, muscle sympathetic nerve activity; PP, pulse pressure; SBP, systolic blood pressure; and SIisOGTT, simple index assessing insulin sensitivity.

Verloop et al  Renal Denervation in Metabolic Syndrome

Insulin Sensitivity

Table 2 represents the insulin, glucose, and C-peptide levels at baseline and follow-up. No significant changes were observed in these laboratory parameters.

The effect on IS is shown in the Figure. Six months after RDN median IS, as assessed by SIisOGTT, did not change (median change, 0.00; interquartile range, 0.0141; P=0.60). Twelve months after RDN median IS also did not alter significantly (median change, −0.001; interquartile range, 0.0194; P=0.77). Also, in the patients with a reduction of ≥5 mmHg in 24-hour SBP (n=12) SIisOGTT also did not change (median change, −0.0030; interquartile range, 0.0248; P=0.88).

Age, sex, and baseline BP were not related to a change in SIisOGTT in a univariate linear regression (Table 3), neither were changes in BP nor systematic sympathetic activity. A more impaired SIisOGTT and more impaired HOMA-IR at baseline were related to deterioration in SIisOGTT in a univariate and multivariate linear regression (Table 3).

HOMA-IR did not change at 6- and 12-month follow-up. Twelve months after RDN, HOMA-IR decreased numerically by −0.55±3.7 (P=0.43; Figure) although this did not reach any statistical significance.

Blood Pressure

Six months after RDN office BP reduced by 7±15/5±10 mmHg (P=0.02/0.01). This reduction in office BP persisted ≤12 months after treatment with a mean reduction of −7±14/−7±7 mmHg when compared with baseline office BP (P=0.01/<0.01). A figure expressing the change on BP is shown in the online-only Data Supplement.

Six months after RDN, 24-hour BP reduced from 144±12/88±9 to 141±13/85±9 mmHg with a mean difference of −3±8/−3±6 mmHg (P=0.07/0.01). Twelve months after RDN, ambulatory 24-hour BP was reduced by 6±12/5±7 mmHg when compared with baseline (P=0.02/<0.01).

A higher ABPM at baseline was related to a more pronounced decrease in ambulatory BP in a univariate and multivariate linear regression analysis (Table 3).

The LMM showed that per month SBP, diastolic BP, mean arterial pressure, and HR all did not significantly change over time using SBPM. Mean SBP remained stable with a δ of −0.05±0.38 mmHg per month (P=0.89). When corrected for changes in daily units of antihypertensive medication, mean SBP remained stable with a δ of +0.12±0.22 mmHg per month (P=0.60). Corrected for BMI mean SBP remained stable with a δ of −1.4±1.30 mmHg per month (P=0.27). Corrected for estimated glomerular filtration rate mean SBP remained stable with a δ of +0.54±1.11 mmHg per month (P=0.63)

Sympathetic Activity

Ten patients gave informed consent to participate in the MSNA-substudy and had a complete set of MSNA-measurements. We had 26 complete sets of HRV measurements (no complete sets in 3 patients), MSNA expressed as bursts per minute did not change after RDN: 48 (41) bursts/min at baseline when compared with 48 (31) bursts/min (P=0.86) at 6-month follow-up. MSNA corrected for changes in HR also did not change: 74 (48) bursts/100 heartbeats at baseline versus 75 (23) bursts/100 heartbeats at 6-month follow-up (P=0.80).

No significant differences in HRV measures were observed 12 months after treatment. Total power showed a median numeric increase of 4% (408%) (P=0.16). Median LF-power showed a numeric increase of 68% (727%) increase (P=0.08), median HF-power showed a numeric reduction of 22% (1241%) reduction (P=0.29). The consequent nonsignificant increase in LF:HF ratio was 59% (2388%); P=0.15. The extensive results of MSNA and HRV are displayed in the online-only Data Supplement.

Safety

Renal function showed a trend toward improvement during 12-month follow-up (Table 2). There were 3 adverse events in the study. One patient had a minor bleeding at the puncture site the day after treatment that was treated with compression. One patient had an ischemic stroke caused by a stenosis of the arteria carotis 2 months after RDN, and 1 patient had a transient ischemic attack 10 months after RDN.
Discussion

To our knowledge, the present study is among the first prospectively investigating the effects of RDN on metabolic parameters and sympathetic activity in patients with MetS. We showed that RDN did not lead to an improvement of IS ≤12 months after treatment although we observed a significant reduction in ambulatory BP in this nearly drug-naïve population. Remarkably, we observed that RDN did not alter sympathetic activity as assessed by MSNA and HRV. In contradiction with changes in 24-hour BP, it was found that repeated BP measurements at home showed no significant reduction over time.

Decreased IS is an important risk factor for the occurrence of cardiovascular disease. Because direct measurement of IS is invasive, surrogate indexes have been developed using insulin and glucose levels at various OGTT sampling times. On the basis of retrieved OGTT-data, we estimated IS by means of the SlisOGTT formula. SlisOGTT is strongly associated with directly measured IS by euglycemic-hyperinsulinemic clamping.

Because the SlisOGTT showed that IS did not change after RDN, we could not confirm the impressive improvement in IS as reported previously. As we did not include a control group, we cannot compare the results of the treated patients against the natural course. Potentially, a further deterioration in metabolic state can be prevented using RDN although this is highly speculative. The difference between the present study and the previously published study may be explained by patient selection. Mahfoud et al included patients with resistant hypertension, whereas we included nearly drug-naïve patients. It may, therefore, be that the sympathetic activation was higher in their population. Yet, HOMA-IR and other baseline characteristics in the present study were comparable with the previous study or even more impaired. Second, patients had a high baseline SNA with a mean of 48 (35) bursts per minute. In other studies investigating the change of sympathetic activity baseline values ranging from 34±2 to 50±2 burst/min were observed.

Table 2. Change in Anthropometrics and Laboratory Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Baseline</th>
<th>6-mo Follow-Up</th>
<th>P Value*</th>
<th>12-mo Follow-Up</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, kg</td>
<td>96±15</td>
<td>95±15</td>
<td>0.08</td>
<td>95±15</td>
<td>0.22</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>31.5±5.0</td>
<td>31.0±4.9</td>
<td>0.09</td>
<td>31.0±4.8</td>
<td>0.21</td>
</tr>
<tr>
<td>Abdominal waist, cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>112±13</td>
<td>111±13</td>
<td>0.11</td>
<td>111±12</td>
<td>0.68</td>
</tr>
<tr>
<td>Women</td>
<td>110±11</td>
<td>111±11</td>
<td>0.19</td>
<td>110±11</td>
<td>0.83</td>
</tr>
<tr>
<td>eGFR ‡ mL/min per 1.73 m²</td>
<td>85±15</td>
<td>88±14</td>
<td>0.02</td>
<td>88±14</td>
<td>0.06</td>
</tr>
<tr>
<td>Fasting glucose, mmol/L</td>
<td>7.2±1.7</td>
<td>7.4±2.6</td>
<td>0.34</td>
<td>7.0±1.3</td>
<td>0.34</td>
</tr>
<tr>
<td>Fasting insulin, mIU/L</td>
<td>20.9±10.6</td>
<td>20.1±9.8</td>
<td>0.53</td>
<td>19.6±11.1</td>
<td>0.53</td>
</tr>
<tr>
<td>Fasting C-peptide, pmol/L</td>
<td>1319±410</td>
<td>...</td>
<td>...</td>
<td>1306±488</td>
<td>0.82</td>
</tr>
<tr>
<td>Daily use of antihypertensive drugs</td>
<td>1.2±0.4</td>
<td>1.3±0.5</td>
<td>0.41</td>
<td>1.3±0.5</td>
<td>0.83</td>
</tr>
</tbody>
</table>

eGFR indicate estimated glomerular filtration rate.

*Six months vs baseline.
†Twelve months vs baseline
‡Calculated on the basis of the Chronic Kidney Disease Epidemiology Collaboration formula.

Figure. Change in insulin sensitivity. HOMA-IR indicates the homeostasis model of assessment-insulin resistance; and SlisOGTT, Simple Index assessing Insulin Sensitivity Oral Glucose Tolerance Test.
Preferably, we would have stratified the present population to more or less severe metabolic classes to evaluate whether more diseased metabolic patients would respond differently. However, the current study population is too small for such a sensitivity analysis.

Although both office and ambulatory BP decreased significantly after RDN, the reduction was less impressive when compared with earlier studies.9,27 The present results are more in line with the recent HTN-3 trial.10 Similar to previously reported findings, we observed a relationship between a higher ambulatory SBP at baseline and a more pronounced reduction in SBP at 12-month follow-up.28 However, SBPM showed no decrease over time after RDN. In contrast to previous studies, we used a LMM to investigate the reduction in SBPM over time. We believe that this LMM is more accurate because it takes intracorrelation into account and, therefore, minimizes the effect of regression of the mean that can be observed when analyses are based on 2 measurements.29

Another interesting observation of the present study was that positive effects on IS or BP after RDN occurred independent of each other. On the basis of influence of the sympathetic nervous system on MetS,4,5 we expected that if RDN was successful, it would lead to an improvement in both IS and BP.

Based on the HTN-3 trial, the role of RDN has been criticized and it has been discussed whether any effect of RDN can be attributed to an improved drug adherence in the patients, rather than by the procedure itself.30 In the present study, we performed IS, BP, MSNA, and HRV measurements during baseline and follow-up in a medication-free interval. This made us able to measure the net effect of RDN. Therefore, we think that improved drug adherence did not play a role in the significant reduction in both office and ambulatory BP. One may discuss that the observed reduction in office BP measurement and ABPM can simply be explained by the regression to the mean phenomenon. Asmar et al31 showed that regression to the mean can lead to a mean 24-hour SBP reduction of 2.9 mm Hg, which is comparable with the decrease in ABPM in the present study. The SBPM data of the present study may underscribe this hypothesis. SBPM is a reliable means of BP monitoring because it offers the possibility to measure BP over many time points in a home setting.32 Moreover, we used the LMM to evaluate the effect on SBPM. This LMM excludes the effect of regression to the mean.

Another point of discussion after the HTN-3 trial is whether RDN is able to lower systemic SNA. The present study cannot confirm that a reduced systemic SNA after RDN led to a decreased BP because we observed no relationship between reduction in MSNA and reduction in BP. It may be that we did not correctly quantify MSNA. We do not consider that a plausible option because we have a vast experience with this technique and results have proven to be reproducible.33–35 Moreover, both MSNA and HRV measures showed similar results.

Another explanation may be that denervation of the renal nerves does not lower systemic SNA. However, this seems

Table 3. The Relationships Between Change in Insulin Sensitivity or Ambulatory BP and Baseline Characteristics or Changes in Study Parameters

<table>
<thead>
<tr>
<th>Changes in Insulin Sensitivity or Ambulatory BP</th>
<th>β</th>
<th>95% CI</th>
<th>P Value</th>
<th>β</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in SisOGTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline SisOGTT</td>
<td>−0.249</td>
<td>−0.490 to −0.009</td>
<td>0.04</td>
<td>−0.25</td>
<td>−0.491 to −0.008</td>
<td>0.04</td>
</tr>
<tr>
<td>Baseline 24-h SBP</td>
<td>0</td>
<td>−0.001 to 0.000</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline HOMA-IR</td>
<td>0.002</td>
<td>0.000 to 0.003</td>
<td>0.03</td>
<td>0.002</td>
<td>0.000 to 0.003</td>
<td>0.02</td>
</tr>
<tr>
<td>Age at baseline, y</td>
<td>0</td>
<td>0.000 to 0.001</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>−0.006</td>
<td>−0.017 to 0.005</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in 24-h SBP</td>
<td>2.22E−05</td>
<td>0.000 to 0.000</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in BMI</td>
<td>−0.002</td>
<td>−0.005 to 0.000</td>
<td>0.07</td>
<td>−0.002</td>
<td>−0.004 to 0.001</td>
<td>0.12</td>
</tr>
<tr>
<td>Change in MSNA (burst/100 HB)</td>
<td>8.65E−05</td>
<td>0.000 to 0.001</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in LF:HF ratio</td>
<td>−0.001</td>
<td>−0.004 to 0.001</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of ablations</td>
<td>−0.001</td>
<td>−0.003 to 0.001</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in ambulatory BP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline 24-h SBP</td>
<td>−0.593</td>
<td>−0.931 to −0.254</td>
<td>&lt;0.01</td>
<td>−0.493</td>
<td>−0.820 to −0.166</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Baseline HOMA-IR</td>
<td>−0.292</td>
<td>−1.774 to 1.190</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in SisOGTT</td>
<td>17.098</td>
<td>−329.64 to 363.84</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in BMI</td>
<td>−0.127</td>
<td>−2.402 to 2.149</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in MSNA (burst/100 HB)</td>
<td>−0.174</td>
<td>−0.930 to 0.582</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in LF:HF ratio</td>
<td>−1.203</td>
<td>−3.088 to 0.682</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of ablations</td>
<td>−0.43</td>
<td>−2.015 to 1.156</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

β indicates regression coefficient; BMI, body mass index; BP, blood pressure; CI, confidence interval; HB, heartbeats; HOMA-IR, homeostasis model of assessment-insulin resistance; LF:HF, low frequency:high frequency; MSNA, muscle sympathetic nerve activity; SBP, systolic blood pressure; and SisOGTT, Simple Index assessing Insulin Sensitivity oral glucose tolerance test.

*Adjustment for age and sex.
improbable because preclinical studies have proven that surgical denervation is able to lower sympathetic activity. Therefore, it may be that the currently used catheter does not adequately lower sympathetic nervous system activity. In this light, a concern in the field of RDN is that we lack periprocedural markers. Thus, at present, we are not able to evaluate whether we adequately target the renal sympathetic nerves. A preliminary report by Chinnushi et al\(^7\) indicated that electroanatomical mapping may provide such a tool. Additional research should be focused on the identification of such periprocedural markers.

**Limitations**

Although a sample size calculation was performed beforehand, the present study may have been underpowered to detect any significant differences in this low-risk population. The mean difference we expected was much higher than the observed difference. It is important to realize that the small study group makes it difficult to draw firm conclusions. The present study was, however, set up as feasibility study and should therefore be considered as hypothesis generating. Our study lacked a control group and larger, sham-controlled trial in patients with more severely impaired IS should be well powered to detect any differences.

**Perspectives**

The present study shows that RDN does not lead to an improvement of IS ≤12 months after treatment. Although we observed a significant reduction in ABPM, it is likely that this can be explained by regression to the mean. The measures of sympathetic activity suggested that SNA did not change after RDN, or that a change in SNA was related to a change in BP or IS. In the light of the Symplicity HTN-3 trial, the current results are all the more important. Exploring the role of sympathetic hyperactivity and RDN in IS should be performed more extensively in future, preferably randomised controlled trials. Hereby, important issues will be the choice of patient population, denervation technique/catheter type, and hopefully a robust future per-procedural read-out. The present study may have been underpowered to detect any significant differences in this low-risk population. The mean difference we expected was much higher than the observed difference. It is important to realize that the small study group makes it difficult to draw firm conclusions. The present study was, however, set up as feasibility study and should therefore be considered as hypothesis generating. Our study lacked a control group and larger, sham-controlled trial in patients with more severely impaired IS should be well powered to detect any differences.

**Acknowledgments**

We gratefully acknowledge the patients who contributed to this study for their willingness to participate in the study and for the time they investigated in the study visits.

**Sources of Funding**

This study was conducted as an investigator driven study. However, Medtronic has funded the Department of Cardiology to perform the study. Medtronic was not involved in the acquisition of the data, in the statistical analysis, or in the drafting and revision of the article.

**Disclosures**

None.

**References**


We showed that renal denervation did not lead to an improvement of insulin sensitivity. We did observe a reduction in ambulatory blood pressure; however, we found that repeated blood pressure measurements at home showed no significant reduction over time. Furthermore, we did not observe a reduction in systemic sympathetic activation in this population with metabolic syndrome.
Denervation of the Renal Arteries in Metabolic Syndrome: The DREAMS-Study
Willemien L. Verloop, Wilko Spiering, Eva E. Vink, Martine M.A. Beeftink, Peter J. Blankestijn, Pieter A. Doevendans and Michiel Voskuil

Hypertension. published online February 2, 2015:
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/early/2015/02/02/HYPERTENSIONAHA.114.04798

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2015/02/02/HYPERTENSIONAHA.114.04798.DC1
http://hyper.ahajournals.org/content/suppl/2016/04/10/HYPERTENSIONAHA.114.04798.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/
DENERVATION OF THE RENAL ARTERIES IN METABOLIC SYNDROME: THE DREAMS-STUDY

Short title: Renal denervation in Metabolic Syndrome

ONLINE SUPPLEMENT

Manuscript number: HYPE201404798

Willemien L. Verloop M.D.¹; Wilko Spiering Ph.D., M.D.²; Eva E. Vink Ph.D., M.D.³;
Martine M.A. Beeftink M.D.¹; Peter J. Blankestijn Ph.D.; M.D.³, Pieter A. Doevendans Ph.D.,
M.D.¹; Michiel Voskuil Ph.D., M.D.¹

1. Department of Cardiology, University Medical Center Utrecht, Netherlands;
2. Department of Vascular Medicine, University Medical Center Utrecht, Netherlands;
3. Department of Nephrology, University Medical Center Utrecht, Netherlands

Corresponding author:

Michiel Voskuil
University Medical Center Utrecht
Department of Cardiology
P.O. Box 85500
3508 GA Utrecht
The Netherlands
Phone: +31 88 755 6167
Fax: +31 88 755 5427
E-mail: m.voskuil@umcutrecht.nl
Supplemental methods

Office blood pressure and ambulatory 24-hour blood pressure
ABPM was taken using the Mobil-O-Graph device (IEM Healthcare, Stolberg, Germany), with readings taken every 15 min during daytime and every 30 min at nighttime. Using mean SBP and DBP, pulse pressure (PP) was calculated as PP = SBP - DBP. Office BP was measured three times in sitting position after 15 minutes of rest using a non-invasive automated device (OMRON Healthcare Co. Ltd, Kyoto, Japan).

Self-monitored blood pressure
At last, we measured self-monitored BP measurements (SBPM) at home (online supplement). After RDN, patients were given a device to measure their BP at home. SBPM was performed using an automated WatchBP Home device (Microlife Inc., Widnau, Switzerland) that automatically saves measurements to a secure internet site (BP@home, MobiHealth B.V., the Netherlands). Every month patients were asked to measure BP during seven consecutive days. According to the ESH guidelines, patients were instructed to measure BP twice in the morning and twice in the evening. For analysis the average of all values and the averages of evening and morning measurements were used. The measurements of the first day were discarded, to avoid the stress component that may be involved.1

Muscle sympathetic nerve activity
Muscle sympathetic nerve activity (MSNA) measurements were performed at baseline and at 6 months follow-up. A unipolar tungsten microelectrode was placed in a muscle nerve fascicle of the right peroneal nerve using the technique of Wallin et al.2 to record MSNA. After instrumentation, subjects rested for 20 minutes. The correct position of the electrode was evaluated by means of a Valsalva maneuver at the start and end, while heart rate and MSNA were continuously recorded. The neural signal was filtered (bandwidth, 500–2000 Hz), rectified and integrated (time constant, 0.1 s). Nerve activity was monitored online (software: Poly 5, Inspectors Research Systems, Amsterdam, the Netherlands) and stored on disc for offline analysis. Sympathetic bursts were identified by their characteristic morphology and relationship to R waves on the electrocardiogram (ECG). Heartbeat intervals were measured from the ECG, and stored together with the MSNA at a sample frequency of 200 Hz.

Renal Denervation
Patients were treated using the Symplicity Flex device (Medtronic, Minneapolis, USA). Patients received sedation, using a combination of midazolam (starting dose 1-2 mg and uptitrating with 1 mg steps if necessary) and fentanyl (starting dose 50 microgram and uptitrating with 50 microgram steps if deemed necessary). Using also local anesthetics, a 6Fr sheath was introduced via a femoral artery access site. Renal angiograms were performed to confirm anatomic eligibility. Bilateral treatment of the arteries was performed using series of 2-minute radio frequency (RF) energy deliveries along each artery. These treatment points were made in a circumferential way with a minimum of 5 mm distance in between the treatment points.3

Supplemental results
See Table S1 and Figures S1 and S2.
Supplemental references


Table S1. Change in muscle sympathetic nerve activity (n=10) and heart rate variability (n=26)

<table>
<thead>
<tr>
<th></th>
<th>MSNA</th>
<th>6 months follow-up</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate during</td>
<td>Baseline</td>
<td>6 months follow-up</td>
<td></td>
</tr>
<tr>
<td>MSNA</td>
<td>67 ± 9</td>
<td>65 ± 6</td>
<td>0.37</td>
</tr>
<tr>
<td>Burst/min</td>
<td>47.5 (35)</td>
<td>47.5 (31)</td>
<td>0.86</td>
</tr>
<tr>
<td>Burst/HR</td>
<td>74 (45)</td>
<td>75 (23)</td>
<td>0.80</td>
</tr>
<tr>
<td>HRV</td>
<td>Baseline</td>
<td>12 months follow-up</td>
<td></td>
</tr>
<tr>
<td>R-R interval (msec)</td>
<td>847.5 (506)</td>
<td>889.0 (645.0)</td>
<td>0.16</td>
</tr>
<tr>
<td>SDNN (msec)</td>
<td>34.05 (149.0)</td>
<td>32.5 (109.8)</td>
<td>0.72</td>
</tr>
<tr>
<td>Total power (ms²)</td>
<td>593.5 (55774)</td>
<td>503.5 (6213)</td>
<td>0.38</td>
</tr>
<tr>
<td>High frequency (ms²)</td>
<td>153.0 (8723)</td>
<td>119.0 (2705)</td>
<td>0.29</td>
</tr>
<tr>
<td>High frequency (nu, %)</td>
<td>58.4 (73.6)</td>
<td>47.7 (68.8)</td>
<td>0.04</td>
</tr>
<tr>
<td>Low frequency (ms²)</td>
<td>106.0 (3476)</td>
<td>135.0 (1602)</td>
<td>0.08</td>
</tr>
<tr>
<td>Low frequency (nu, %)</td>
<td>41.6 (73.6)</td>
<td>49.7 (68.8)</td>
<td>0.06</td>
</tr>
<tr>
<td>Ratio LF:HF</td>
<td>0.72 (3.54)</td>
<td>1.1 (10.3)</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Categorical variables are depicted as mean ±SD or median (range). Except for heart rate the Wilcoxon signed rank test was used for paired sample analysis. The paired T-test was used for heart rate during MSNA.
Figure S1. Change in blood pressure

![Blood pressure change graph](image)

Figure S2. Individual changes in MSNA

![MSNA change graph](image)

The individual changes in MSNA activity expressed in both burst/minute as burst/100 heart beats.
Denervación renal

Denervación de las arterias renales en personas con síndrome metabólico
Estudio DREAMS

Willemien L. Verloop, Wilko Spiering, Eva E. Vink, Martine M.A. Beefink, Peter J. Blankestijn, Pieter A. Doevendans, Michiel Voskuil

Recibido el 24 de octubre de 2014; primera decisión el 2 de noviembre de 2014; revisión aceptada el 26 de diciembre de 2014.

El síndrome metabólico (SMet) es un conjunto de características metabólicas que está asociado con un aumento al doble del riesgo de padecer enfermedades cardiovasculares.1 De acuerdo con la declaración de la American Heart Association, el SMet se define como la presencia de ≥ 3 de las siguientes 5 características: obesidad abdominal, hiperglucemia, hipertensión, hipertriglicéridemia y niveles bajos de colesterol unido a lipoproteínas de alta densidad (HDL).1 El SMet es un problema a nivel mundial con alta prevalencia, presente en el 22,9% de la población adulta de los EE. UU. en 2010.2 La hipertensión como parte del SMet con frecuencia es resistente a los antihipertensivos habituales; además, los pacientes tienen mayor riesgo de desarrollar diabetes mellitus tipo 2.3

El aumento crónico de la actividad del sistema nervioso simpático es común en el SMet y se ha identificado, mediante estudios preclínicos y clínicos, como un factor clave en el SMet.4,5 Los nervios simpáticos renales son un factor de contribución importante a la fisiopatología del aumento de actividad nerviosa simpática (ANS).6 La denervación renal (DR) percutánea se ha desarrollado como un nuevo tratamiento para reducir la ANS.7,8 Antes que nada, la DR se diseñó para reducir la presión arterial (PA) en pacientes con hipertensión resistente. Aunque los primeros estudios fueron prometedores,8,9 el ensayo HTN-3 controlado con grupo de simulación y con doble enmascaramiento no mostró ninguna reducción de la PA ambulatoria en esta población prácticamente sin tratamiento farmacológico previo.10,11 Por otra parte, se observó un efecto en la actividad simpática sistémica.12,13

Palabras clave: presión arterial ■ resistencia a la insulina ■ síndrome metabólico X ■ denervación renal ■ actividad nerviosa simpática
mostró diferencias significativas en la respuesta de la PA entre el grupo sometido a tratamiento y el grupo de simulación. En un análisis retrospectivo, se evaluaron los efectos de la DR sobre la sensibilidad a la insulina (SI) en pacientes hipertensos. Las mediciones de la SI mejoraron de manera significativa después de la DR. No obstante, la población fue una población hipertensa heterogénea que incluyó pacientes con nivel normal de glucosa.

En el estudio actual prospectivo, nuestro objetivo fue investigar los efectos de la DR sobre la SI y la PA en una población prácticamente sin tratamiento farmacológico previo con SMet. Planteamos la hipótesis de que la DR produciría un efecto positivo sobre la SI y la PA. Para evaluar el efecto de la DR sobre la actividad simpática, evaluamos la ANS muscular (ANSM) y la variabilidad de la frecuencia cardíaca (VFC) como criterios secundarios de valoración.

**Métodos**

El estudio actual fue diseñado como un estudio (piloto) de cohorte prospectivo (NCT01465724). El comité de ética local de la University Medical Center Utrecht aprobó el estudio de conformidad con la Declaración de Helsinki y el Título 45, Código de Regulaciones Federales de EE.UU., Parte 46, Protección de Sujetos Humanos. Todos los participantes otorgaron su consentimiento informado. Los pacientes fueron tratados entre marzo de 2012 y agosto de 2013 con un seguimiento planificado a los 6 y 12 meses.

**Población del estudio**

Los pacientes elegibles tenían > 18 años de edad, presentaban una combinación de glucosa elevada en ayunas, hipertensión y otra característica metabólica para completar los criterios de SMet.1 La hipertensión se definió como PA sistólica (PAS) ambulatoria de 24 horas > 130 mm Hg. La glucosa elevada en ayunas se definió como > 5,6 mmol/l (> 100 mg/dl). Los pacientes usaron, como máximo, 1 antihipertensivo o 1 antidiabético en el período inicial. Antes del tratamiento, los pacientes fueron seleccionados mediante el uso de un protocolo estandarizado, según se describió anteriormente.

Durante la evaluación en el período inicial y en las visitas de seguimiento, se obtuvo información detallada sobre el uso de medicamentos y se llevó a cabo una exploración física. Los participantes recibieron cuestionarios para informar sobre la actividad física en ese momento. Para observar el efecto neto de la DR durante el período inicial y las visitas de seguimiento, se suspendieron temporalmente los antihipertensivos y antiidiabéticos (si eran utilizados), de conformidad con el protocolo13 y cuando se consideró seguro. Esto dio como resultado pacientes sin tratamiento farmacológico previo durante el período inicial y las visitas de seguimiento.

**Evaluación de tolerancia a la glucosa**

En el período inicial y durante ambas visitas de seguimiento, se realizó una prueba de tolerancia a la glucosa (PTC) estándar de 75 g, con muestras de plasma obtenidas 0, 30, 60, 90 y 120 minutos después de la carga de glucosa. El criterio principal de valoración fue el cambio en la SI evaluado mediante la fórmula del Índice simple que evalúa la SI mediante la prueba oral de tolerancia a la glucosa (Simple Index assessing Insulin Sensitivity oral glucose tolerance test, SIsOGTT). El SIsOGTT se calculó usando la fórmula: SIsOGTT=1/(log [Σ glucosa t 0-30-90-120] [mmol/l]+log [Σ insulina t 0-30-90-120] [IU/µml]). Además, el modelo de evaluación de homeostasis-resistencia a la insulina (HOMA-IR) se calculó de la siguiente manera: HOMA-IR=(glucosa t0 [mmol/l]x insulina t0 [IU/l])/22,5.

**Monitorio de la PA**

En el período inicial y a los 6 y 12 meses de la DR, se tomaron las mediciones ambulatorias de la PA (MAPA) de 24 horas y las mediciones del la PA en consultorio (Suplemento de información on-line). Además, evaluamos las mediciones de la PA automonitoreadas (MPAA) domiciliarias (Suplemento de información on-line) de conformidad con las pautas de la European Society of Hypertension. La MPAA se efectuó usando el dispositivo automático WatchBP Home (Microlife Inc, Widnau, Suiza).

**Actividad nerviosa simpática**

Para obtener información sobre la ANS efectuamos las mediciones de la ANSM y la VFC en el período inicial y durante la seguimiento. Las mediciones de la ANSM se ofrecieron como un subgrupo para el cual los pacientes tuvieron que otorgar su consentimiento informado por separado. Las mediciones de la ANSM se llevaron a cabo en el periodo inicial y a los 6 meses de seguimiento, similar a los métodos recientemente detallados (Suplemento de información on-line). La ANSM se expresa como la cantidad de impulsos de actividad simpática por minuto y como la cantidad de impulsos por cada 100 latidos cardíacos para corregir por diferencias en la FC.

La prueba de VFC se realizó utilizando un tonómetro de aplanamiento interconectado con un software para VFC (Sphygmocor; Atcor Medical Systems Inc, Sydney, Australia). Los resultados de la medición de la VFC fueron parámetros de dominio de frecuencia: componente de potencia espectral de alta frecuencia (AF) de la VFC (medido en unidades absolutas, ms2), baja frecuencia (BF), potencia total e índice BF:AF. La AF, por lo general, representa la actividad parasimpática. La BF es influenciada por la actividad simpática y parasimpática. El índice BF:AF representa el equilibrio entre la actividad parasimpática y simpática.

**Seguridad**

En el período inicial y durante las visitas de seguimiento, se prestó especial atención a la manifestación de eventos adversos (serios) y se les indicó a los pacientes que informaran cualquier evento adverso de manera espontánea. La función renal se evaluó en el período inicial y durante el seguimiento. Se calculó la tasa de filtración glomerular estimada usando la fórmula Enfermedad Renal Crónica-Colaboración Epidemiológica (Chronic Kidney Disease Epidemiology Collaboration).

**Denervación renal**

Los pacientes fueron sometidos a tratamiento con el dispositivo Simplicity Flex (Medtronic, Minneapolis, MN) como se describió previamente (Suplemento de información on-line).
En el estudio actual se incluyeron 29 pacientes que cumplían los criterios de inclusión. Las características iniciales se enumeran en la Tabla 1. La mayoría de los pacientes fueron hombres con una media de edad de 60 ± 9 años. El 34% (n = 10) de los pacientes no utilizó antihipertensivos en el período inicial y el 74% (n = 25) no utilizó antidiabéticos en el período inicial. Todos los pacientes incluidos fueron blancos. Se observaron arterias renales múltiples en 9 (31%) pacientes. En 4 pacientes, las arterias múltiples fueron del tamaño suficiente para la realización de la DR y, por consiguiente, todas las arterias fueron sometidas a tratamiento; en 5 pacientes, solamente se trataron las arterias principales en ambos lados. Durante la DR, se realizó un número promedio de 14,3 ± 3,1 ablaciones por paciente.

Durante el seguimiento, el IMC y la circunferencia de cintura no sufrieron modificaciones, como se muestra en la Tabla 2. El uso de antihipertensivos también se mantuvo estable durante el seguimiento (Tabla 2). La actividad física no se modificó durante el seguimiento (P = 0,43).

### Sensibilidad a la insuliná

En la Tabla 2 se exhiben los niveles de insulina, glucosa y péptidos C en el período inicial y en el seguimiento. No se observaron cambios significativos en estos parámetros de laboratorio. El efecto sobre la SI se muestra en la Figura. Seis meses después de la DR, la mediana de SI no se modificó, según lo evaluado α (error tipo I) se fijó en 0,05. Esto arrojó un tamaño de muestra de 27 pacientes. Para garantizar que el estudio no tuviera baja potencia estadística, se intentó incluir 30 pacientes.

Todas las variables se informaron como media ± DE (amplitud intercuartílica) o proporción, cuando fuera apropiado. Los cambios en la SI y PA se calcularon a los 6 y 12 meses de la DR. Un valor positivo en SisOGTT representa una mejoría en la SI. Un valor negativo en PA, glucosa, insulina, HOMA-IR, ANSM o VFC representa una mejoría. La prueba de la t de Student o la prueba de Wilcoxon para datos emparejados se utilizaron para el análisis de muestras apareadas, cuando fue apropiado.

La relación entre el cambio en SisOGTT (variable independiente) y los cambios en la PA, función renal o antropometría (variables dependientes) 12 meses después de la DR se analizó utilizando modelos de regresión lineal. Los modelos de regresión lineal multivariados se utilizaron para corregir por edad y sexo. En cuanto al análisis de la MPAA, se utilizaron modelos lineales mixtos (MLM) para evaluar el efecto sobre la PA con el paso del tiempo. El efecto con el paso del tiempo se presenta como media ± DE por mes. Los MLM con una intersección aleatoria y una pendiente aleatoria o una intersección aleatoria sola (según el valor inferior del criterio de información de Akaike (Akaike information criterion, AIC) se ajustaron para modelar los cambios en la PAS, PA diastólica y FC con el paso del tiempo. Posteriormente ajustamos los modelos por factores iniciales (sexo, edad) o cambio en las unidades diarias, en el IMC o en la tasa de filtración glomerular estimada. Un valor de P bilateral < 0,05 se consideró estadísticamente significativo. Todos los análisis se realizaron con el paquete estadístico SPSS versión 20 (IBM SPSS Data Collection, Chicago, IL).

### Resultados

#### Características de los pacientes

En el estudio actual se incluyeron 29 pacientes que cumplían los criterios de inclusión. Las características iniciales se enumeran en la Tabla 1. La mayoría de los pacientes fueron hombres con una media de edad de 60 ± 9 años. El 34% (n = 10) de los pacientes no utilizó antihipertensivos en el período inicial y el 74% (n = 25) no utilizó antidiabéticos en el período inicial. Todos los pacientes incluidos fueron blancos. Se observaron arterias renales múltiples en 9 (31%) pacientes. En 4 pacientes, las arterias múltiples fueron del tamaño suficiente para la realización de la DR y, por consiguiente, todas las arterias fueron sometidas a tratamiento; en 5 pacientes, solamente se trataron las arterias principales en ambos lados. Durante la DR, se realizó un número promedio de 14,3 ± 3,1 ablaciones por paciente.

#### Análisis estadístico

De antemano, se realizó un cálculo del tamaño de la muestra para el criterio principal de valoración (SisOGTT). Conforme a la literatura disponible,21 se esperaba una diferencia promedio de 0,4 ± 0,7 después del tratamiento. La potencia deseada se fijó en 0,80,
mediante SIsOGTT (mediana de cambio, 0,00; amplitud intercuartílica, 0,0141; P = 0,60). Doce meses después de la DR, la mediana de SI tampoco presentó modificaciones significativas (mediana de cambio, –0,001; amplitud intercuartílica, 0,0194; P = 0,77). Asimismo, en los pacientes con una reducción de > 5 mm Hg de la PAS de 24 horas (n = 12), SIsOGTT tampoco mostró modificaciones (mediana de cambio, –0,0030; amplitud intercuartílica, 0,0248; P = 0,88).

Edad, sexo y PA inicial no se relacionaron con un cambio en SIsOGTT en una regresión univariada lineal (Tabla 3), como tampoco lo hicieron los cambios en la PA y la actividad simpática sistémica. Una alteración mayor en SIsOGTT y en HOMA-IR en el período inicial se relacionó con deterioro en SIsOGTT en una regresión lineal univariada y multivariada (Tabla 3). HOMA-IR no se modificó a los 6 y 12 meses de seguimiento. Doce meses después de la DR, HOMA-IR disminuyó en términos numéricos —0,55 ± 3,7 (P = 0,43; Figura) aunque este hecho no alcanzó significación estadística.

Presión arterial
Seis meses después de la DR, la PA en consultorio se redujo 7 ± 13/5 ± 10 mm Hg (P = 0,02/0,01). Esta reducción en la PA en consultorio persistió < 12 meses después del tratamiento con una reducción promedio de –7 ± 14/–7 ± 7 mm Hg cuando se comparó con la PA inicial en consultorio (P = 0,01/0,01). En el Suplemento de información on-line se muestra una figura que expresa el cambio en la PA.

Seis meses después de la DR, la PA de 24 horas se redujo de 144 ± 12/88 ± 9 a 141 ± 13/85 ± 9 mm Hg con una diferencia promedio de —3 ± 9/—3 ± 6 mm Hg (P = 0,07/0,01) Doce meses después de la DR, la PA ambulatoria de 24 horas se redujo 6 ± 12/5 ± 7 mm Hg cuando se comparó con el período inicial (P =
Los valores más elevados de la MAPA en el período inicial se relacionaron con una disminución más pronunciada de la PA ambulatoria en un análisis de regresión lineal univariado y multivariado (Tabla 3).

El MLM mostró que, por mes, la PAS, la PAD, la presión arterial media y la FC no se modificaron significativamente con el paso del tiempo utilizando MPAA. La PAS media permaneció estable con δ de —0,05 ± 0,38 mm Hg por mes (P = 0,89). Cuando se corrigió por cambios en las unidades diarias de antihipertensivos, la PAS media se mantuvo estable con δ de —0,03 ± 0,22 mm Hg por mes (P = 0,60). Al corregir por IMC, la PAS media permaneció estable con δ de —1,4 ± 1,30 mm Hg por mes (P = 0,27). Al corregir por tasa de filtración glomerular estimada, la PAS media permaneció estable con δ de +0,54 ± 1,11 mm Hg por mes (P = 0,63).

### Actividad simpática

Diez pacientes otorgaron su consentimiento informado para participar en el subestudio de ANSM y contaron con un conjunto completo de mediciones de ANSM. Hubo 26 conjuntos completos de mediciones de VFC (3 pacientes no los tenían). La ANSM expresada como impulsos por minuto no se modificó después de la DR: 48 (41) impulsos/min. en el período inicial en comparación con 48 (31) impulsos/min. (P = 0,86) a los seis meses de seguimiento. Tampoco se modificó la ASNM corregida por cambios en la FC: 74 (48) impulsos/100 latidos cardiacos en el período inicial versus 75 (23) latidos/100 latidos cardiacos a los 6 meses de seguimiento (P = 0,80).

No se observaron diferencias significativas en las mediciones de la VFC a los 12 meses del tratamiento. La potencia total mostró una mediana de aumento numérico del 4% (408 %) (P = 0,16). La mediana de potencia-BF mostró un aumento numérico del 68% (727%) (P = 0,08), la mediana de potencia-AF mostró una reducción numérica del 22% (1241%) (P = 0,29). El consecuente aumento no significativo en el índice BF-AF fue del 59% (2388%; P = 0,15). Los resultados descriptivos de la ANSM y la VFC se muestran en el Suplemento de información on-line.

### Seguridad

La función renal mostró una tendencia a mejorar durante el seguimiento de 12 meses (Tabla 2). En el estudio, se registraron 3 eventos adversos. Un paciente presentó sangrado menor en el sitio de la punción el día posterior al tratamiento; se lo trató con

<table>
<thead>
<tr>
<th>Cambio en la sensibilidad a la insulina o PA ambulatoria</th>
<th>Cambio en SlisOGTT</th>
<th>Cambio en PAS de 24 h</th>
<th>Cambio en el IMC</th>
<th>Cambio en ANSM (impulsos/100 LC)</th>
<th>Cambio en el índice BF:AF</th>
<th>N.° de ablaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio en el SlisOGTT</td>
<td>SlisOGTT inicial</td>
<td>—0,249</td>
<td>—0,490 a —0,009</td>
<td>0,04</td>
<td>—0,25</td>
<td>—0,491 a —0,008</td>
</tr>
<tr>
<td></td>
<td>PAS inicial de 24 horas</td>
<td>0</td>
<td>—0,001 a 0,000</td>
<td>0,54</td>
<td>0,002</td>
<td>0,000 a 0,003</td>
</tr>
<tr>
<td></td>
<td>HOMA-IR inicial</td>
<td>0,002</td>
<td>0,000 a 0,003</td>
<td>0,03</td>
<td>0,002</td>
<td>0,000 a 0,003</td>
</tr>
<tr>
<td></td>
<td>Edad en el período inicial, años</td>
<td>0</td>
<td>0,000 a 0,001</td>
<td>0,26</td>
<td>0,006</td>
<td>—0,017 a 0,005</td>
</tr>
<tr>
<td></td>
<td>Sexo</td>
<td>—0,006</td>
<td>—0,017 a 0,005</td>
<td>0,29</td>
<td>2,22E–05</td>
<td>0,000 a 0,000</td>
</tr>
<tr>
<td></td>
<td>Cambio en PAS de 24 h</td>
<td>0,002</td>
<td>0,000 a 0,000</td>
<td>0,92</td>
<td>2,22E–05</td>
<td>0,000 a 0,000</td>
</tr>
<tr>
<td></td>
<td>Cambio en el IMC</td>
<td>—0,002</td>
<td>—0,005 a 0,000</td>
<td>0,07</td>
<td>—0,004</td>
<td>—0,000 a 0,001</td>
</tr>
<tr>
<td></td>
<td>Cambio en ANSM (impulsos/100 LC)</td>
<td>8,65E–05</td>
<td>0,000 a 0,001</td>
<td>0,71</td>
<td>8,65E–05</td>
<td>0,000 a 0,001</td>
</tr>
<tr>
<td></td>
<td>Cambio en el índice BF:AF</td>
<td>—0,001</td>
<td>—0,004 a 0,001</td>
<td>0,25</td>
<td>—0,001</td>
<td>—0,003 a 0,001</td>
</tr>
<tr>
<td></td>
<td>N.° de ablaciones</td>
<td>—0,001</td>
<td>—0,003 a 0,001</td>
<td>0,28</td>
<td>—0,001</td>
<td>—0,003 a 0,001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cambio en el PA ambulatoria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio en la sensibilidad a la insulina o PA ambulatoria</td>
<td>Cambio en SlisOGTT</td>
<td>Cambio en PAS de 24 h</td>
<td>Cambio en el IMC</td>
<td>Cambio en ANSM (impulsos/100 LC)</td>
<td>Cambio en el índice BF:AF</td>
<td>N.° de ablaciones</td>
</tr>
<tr>
<td>Cambio en el SlisOGTT</td>
<td>SlisOGTT inicial</td>
<td>—0,593</td>
<td>—0,931 a —0,254</td>
<td>&lt;0,01</td>
<td>—0,493</td>
<td>—0,820 a —0,166</td>
</tr>
<tr>
<td></td>
<td>PAS inicial de 24 horas</td>
<td>—0,292</td>
<td>—1,774 a 1,190</td>
<td>0,69</td>
<td>17,098</td>
<td>—329,64 a 363,84</td>
</tr>
<tr>
<td></td>
<td>HOMA-IR inicial</td>
<td>—0,127</td>
<td>—2,402 a 2,149</td>
<td>0,91</td>
<td>—0,174</td>
<td>—0,930 a 0,582</td>
</tr>
<tr>
<td></td>
<td>Cambio en ANSM (impulsos/100 LC)</td>
<td>—1,203</td>
<td>—3,088 a 0,682</td>
<td>0,2</td>
<td>—1,203</td>
<td>—3,088 a 0,682</td>
</tr>
<tr>
<td></td>
<td>N.° de ablaciones</td>
<td>—0,43</td>
<td>—2,015 a 1,156</td>
<td>0,58</td>
<td>—0,43</td>
<td>—2,015 a 1,156</td>
</tr>
</tbody>
</table>
| β indica coeficiente de regresión; IMC, índice de masa corporal; PA, presión arterial; IC, intervalo de confianza; LC, latidos cardiacos; HOMA-IR, modelo de evaluación de homeostasis-resistencia a la insulina; BF:AF, baja frecuencia:alta frecuencia; ANSM, actividad nerviosa simpática muscular; PAS, presión arterial sistólica; SlisOGTT, Índice simple que evalúa la sensibilidad a la insulina mediante la prueba de tolerancia oral a la glucosa. * Ajuste por edad y sexo.
compresión. Un paciente presentó un accidente cerebrovascular isquémico causado por estenosis de la carótida 2 meses después de la DR, y 1 paciente presentó un accidente isquémico transitorio 10 meses después de la DR.

**Debate**

De acuerdo a lo que tenemos, el presente estudio se encuentra entre los primeros que investigó prospectivamente los efectos de la DR sobre los parámetros metabólicos y la actividad simpática en pacientes con SMet. Se demostró que la DR no condujo a ninguna mejora de la SI a < 12 meses después del tratamiento, aunque se observó una reducción significativa en el PA ambulatorio en esta población prácticamente sin tratamiento farmacológico previo. Notablemente se observó que la DR no alteró la actividad simpática, según lo evaluado por la ANSM y la VFC. En contradicción con los cambios en el PA de 24 horas, se halló que las mediciones repetidas domiciliarias de la PA no demostraron ninguna reducción significativa con el paso del tiempo.

La disminución de la SI es un factor de riesgo importante con relación a la aparición de enfermedades cardiovasculares.22 Debiendo a que la medición directa de la SI es invasiva,23 se han desarrollado índices sustitutos utilizando niveles de insulina y glucosa en varios momentos del muestreo de la prueba oral de tolerancia a la glucosa (Oral Glucose Tolerance Test, OGTT).24 En base a los datos recuperados de la OGTT, se estimó la SI por medio de la fórmula SlisOGTT. SlisOGTT está estrechamente asociada con la SI medida directamente por medio de la técnica de pinzamiento euglicémico-hiperinsulinémica.14,21,24 Debido a que SlisOGTT mostró que la SI no se modificó después de la DR, no pudimos confirmar la mejora significativa de la SI, según se informó previamente.11 Como no se incluyó un grupo de referencia, no se pudieron comparar los resultados de los pacientes tratados frente al curso natural. Posiblemente se pueda prevenir un deterioro posterior en el estado metabólico mediante DR, aunque esto es altamente especulativo. La diferencia entre el estudio actual y el estudio publicado anteriormente puede explicarse mediante la selección de pacientes. Mahfoud et al11 incluyeron pacientes con hipertensión resistente, mientras que en nuestro estudio se incluyeron pacientes prácticamente sin tratamiento farmacológico previo. Por lo tanto, es posible que la activación simpática sea mayor en la población de dicho estudio. Incluso, HOMA-IR y otras características iniciales del presente estudio fueron similares a las del estudio anterior, o incluso más deterioradas. En segundo lugar, los pacientes tuvieron un nivel alto ANS inicial con una media de 48 (35) impulsos por minuto. En otros estudios que investigaron el cambio en la actividad simpática, se observaron valores iniciales que oscilaron entre 34 ± 2 y 50 ± 2 impulsos/min.21,26 Preferentemente, habríamos estratificado la población actual a clases metabólicas más o menos graves para evaluar si pacientes con síndrome metabólico más grave responderían de manera diferente. Sin embargo, la población actual del estudio es demasiado pequeña para tal análisis de sensibilidad.

A pesar de que la PA en consultorio y la PA ambulatoria disminuyeron de manera significativa después de la DR, la reducción fue menos significativa cuando se comparó con estudios anteriores.9,22 Los resultados actuales concuerdan más con el ensayo HTN-3 reciente.10 De manera similar a las hallazgos informados previamente, observamos una relación entre una PAS ambulatoria más elevada en el período inicial y una reducción más pronunciada de la PAS a los 12 meses de seguimiento.25 Sin embargo, la MPAA no demostró ninguna disminución con el paso del tiempo después de la DR. A diferencia de los estudios anteriores, en este estudio se utilizó un MLM para investigar la reducción en la MPAA con el paso del tiempo. Consideramos que este MLM es más preciso ya que toma en cuenta la intracorrelación y, en consecuencia, minimiza el efecto de la regresión a la media que se puede observar cuando los análisis se basan en 2 mediciones.20

Otra observación interesante del presente estudio fue que los efectos positivos sobre la SI o la PA después de la DR se produjeron de manera independiente entre sí. En base a la influencia de sistema nervioso simpático sobre el SMet,27 se esperaba que si la DR tenía éxito, esto conduciría a una mejora tanto de la SI como de la PA.

Conforme al ensayo HTN-3, el papel de la DR ha sido criticado, y se ha debatido si cualquier efecto de la DR puede ser atribuido a una mejora en el cumplimiento farmacológico de los pacientes en vez de atribuirse al procedimiento en sí mismo.30 En el presente estudio, se realizaron mediciones de la SI, PA, ANSM y VFC durante el período inicial y el seguimiento, en un intervalo sin medicamentos. Esto posibilitó la medición del efecto neto de la DR. Por consiguiente, se consideró que la mejora en el cumplimiento farmacológico no intervino en la reducción significativa de la PA en consultorio y ambulatoria. Un punto de debate es que la reducción observada en la medición de la PA en consultorio y la MAPA pueden explicarse simplemente mediante el fenómeno de regresión a la media. Asmar et al31 demostraron que la regresión a la media puede conducir a una reducción de 2,9 mm de la PAS media de 24 horas, lo que es semejante a la disminución de la MAPA en el presente estudio. Es posible que los datos de MPAA del presente estudio no describan con exactitud esta hipótesis. MPAA es un medio fiable de monitoreo de la PA debido a que ofrece la posibilidad de medir la PA a lo largo de muchos momentos determinados en un contexto domiciliario.32 Por otra parte, utilizamos el MLM para evaluar el efecto sobre MPAA. Este MLM excluye el efecto de regresión a la media.

Otro punto de debate después del ensayo HTN-3 es si la DR logra reducir la ANS sistémica. El presente estudio no puede confirmar que una reducción de la ANS sistémica después de la DR pueda derivar en una disminución de la PA ya que observamos que no hubo ninguna relación entre la reducción de la ANSM y la reducción de la PA. Es posible que no se haya cuantificado correctamente la ANSM. No se la considera una opción verosímil debido a que tenemos una amplia experiencia con esta técnica y se ha probado que los resultados son reproducibles.13-15 Además, tanto las mediciones de la ANSM como de la VFC demostraron resultados similares.

Otra explicación puede ser que la denervación de los nervios renales no disminuye la ANS sistémica. No obstante, parece inverosímil debido a que estudios preclínicos han demostrado que la denervación quirúrgica puede reducir la actividad simpática.36 Por lo tanto, es posible que el catéter actualmente utilizado no reduzca de manera adecuada la actividad del sistema nervioso simpático. Desde esta perspectiva, una inquietud en el campo de...
la DR es la falta de marcadores perquirúrgicos. Por ende, en la actualidad, no se puede evaluar si nos enfocamos adecuadamente en los nervios simpáticos renales. Un informe preliminar realizado por Chinushi et al37 indicó que un mapeo electroanatómico puede proporcionar dicha herramienta. La investigación complementaria deberá centrarse en la identificación de dichos marcadores perquirúrgicos.

Limitaciones
A pesar de que se realizó un cálculo del tamaño de la muestra de antemano, es posible que el presente estudio haya tenido baja potencia estadística para detectar cualquier diferencia en esta población de bajo riesgo. Se esperaba que la diferencia promedio fuera mucho más elevada que la observada. Es importante darse cuenta que el grupo de estudio pequeño dificulta sacar conclusiones firmes. No obstante, el presente estudio fue considerado un estudio de viabilidad, por lo tanto, debería considerarse como generador de hipótesis. Nuestro estudio careció de un grupo de referencia; además, un ensayo controlado con grupo de simulación más amplio en pacientes con alteración de la SI más grave debería tener buena potencia estadística para detectar cualquier diferencia.

Perspectivas
El presente estudio muestra que la DR no conduce a una mejora en la SI en < 12 meses después del tratamiento. Aunque se observó una reducción significativa en la MAPA, es probable que pueda explicarse mediante la regresión a la media. Las mediciones de la actividad simpática sugirieron que la ANS no se modificó después de la DR, ni que un cambio en la ANS se relacionara con un cambio en la PA o SI. Considerando el ensayo HTN-3 con Simplicity, los resultados actuales son todos más importantes. En el futuro, se debería investigar si hay una correlación entre la hiperactividad simpática y la DR en la SI, preferentemente mediante estudios controlados aleatorizados. En ese caso, los temas importantes serían la elección de la población de pacientes, la técnica de denervación/tipo de catéter y con suerte una técnica de lectura por procedimiento sódica y a futuro para poder evaluar directamente la eficacia de la intervención realizada.

Agradecimientos
Agradecemos enormemente a los pacientes que colaboraron en este estudio por su disposición para participar en el mismo y por el tiempo invertido en las visitas del estudio.

Fuentes de financiamiento
Este estudio se realizó como un estudio conducido por el investigador. No obstante, Medtronic ha otorgado financiación al Departamento de Cardiología para llevar a cabo el estudio. Medtronic no estuvo involucrado en la adquisición de datos, en los análisis estadísticos ni en la redacción y revisión del artículo.

Declaración de conflictos de interés
Ninguno.

Referencias
Verloop et al

Denervación renal en síndrome metabólico 29

¿Qué es nuevo?

- Investigación prospectiva del efecto de la denervación renal sobre la sensibilidad a la insulina con una prueba oral de tolerancia a la glucosa en combinación con parámetros de la actividad nerviosa simpática sistémica.
- Investigación del efecto de la denervación renal en una población prácticamente sin tratamiento farmacológico previo con síndrome metabólico.
- La incorporación de mediciones domiciliarias de la presión arterial y el análisis de estos datos mediante un modelo lineal mixto.

¿Qué es relevante?

- A diferencia de un estudio anterior, no se observó ningún efecto sobre la sensibilidad a la insulina en este estudio prospectivo eficientemente efectuado.
- El presente estudio proporcionó información respecto de qué efecto de la denervación renal puede (parcialmente) explicarse mediante un fenómeno de regresión a la media.

Resumen

Se demostró que la denervación renal no condujo a una mejora en la sensibilidad a la insulina. Se observó una reducción de la presión arterial ambulatoria; no obstante, se halló que las mediciones repetidas domiciliares de la PA no mostraron ninguna reducción significativa con el paso del tiempo. Por otra parte, no se observó una reducción de la actividad simpática sistémica en esta población con síndrome metabólico.