ONLINE SUPPLEMENT:

EXCESS PRESSURE INTEGRAL PREDICTS CARDIOVASCULAR EVENTS INDEPENDENT OF OTHER RISK FACTORS IN THE CONDUIT ARTERY FUNCTIONAL EVALUATION (CAFE) SUB-STUDY OF ANGLO-SCANDINAVIAN CARDIAC OUTCOMES TRIAL (ASCOT)

Justin E Davies¹, Peter Lacy², Therese Tillin², David Collier³, J Kennedy Cruickshank⁴, Darrel P Francis¹, Anura Malaweera¹, Jamil Mayet¹, Alice Stanton⁵, Bryan Williams², Kim H Parker⁶, Simon A McG Thom¹, Alun D Hughes².

¹ International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London, & Imperial College Healthcare NHS Trust, UK
² Institute of Cardiovascular Science and National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, University College London, UK
³ Department of Clinical Pharmacology, William Harvey Research Institute, Bart’s & The London, Queen Mary’s School of Medicine & Dentistry, London, UK
⁴ Cardiovascular Medicine and Nutrition at King's College London, UK
⁵ Royal College of Surgeons in Ireland, St Stephen’s Green, Dublin, Ireland
⁶ Department of Bioengineering, Imperial College London, UK
Supplemental methods

Calculation of excess and reservoir pressure from radial tonometry recordings.

Reservoir pressure was defined as

$$\frac{d\overline{P}}{dt} = a(P - \overline{P}) - b(\overline{P} - P_\infty)$$ \hspace{1cm} (1)

where \overline{P} is a time varying reservoir pressure; $a = \lambda / C$ and $b = 1 / R \cdot C = 1 / \tau$ are the rate constants of the system with units s$^{-1}$ and P_∞ is the pressure at which outflow from the reservoir ceases.

If T_d is the start of diastole and T is the end of the cardiac cycle and there is assumed to be no inflow into the reservoir during diastole ($T_d \leq t \leq T$) then for this period equation (1) becomes

$$\frac{d\overline{P}}{dt} = -b(\overline{P} - P_\infty)$$ \hspace{1cm} (2)

and

$$(\overline{P} - P_\infty) = [\overline{P}(T_d) - P_\infty]e^{-b(t - T_d)}, T_d \leq t \leq T$$ \hspace{1cm} (3)

During systole equation (1) can be solved explicitly using the integration factor $e^{(a+b)t}$ to give

$$\overline{P} = \frac{b}{a = b} P_\infty + e^{-(a+b)t} \times \left[\int_0^t aP(t')e^{(a+b)t'} dt' + \overline{P}_0 - \frac{b}{a + b} P_\infty \right], 0 \leq t \leq T_d$$ \hspace{1cm} (4)

Where \overline{P}_0 is the start of the cardiac cycle. To determine a continuity of \overline{P} is enforced at $t = T_d$, giving

$$\overline{P} = \frac{b}{a + b} P_\infty + e^{-(a+b)T_d} \times \left[\int_0^{T_d} aP(t')e^{(a+b)t'} dt' + \overline{P}_0 - \frac{b}{a + b} P_\infty \right]$$ \hspace{1cm} (5)
T_{e} was defined as the minimum first derivative of pressure(1). This time point was identified automatically using a 7 point Savitsky-Golay first derivative filter function. Exponential fits were performed using the method of moments and the fminsearch algorithm in Matlab.

References